


Preface: Computers I Have Known   1 
 

Books by Charles Simon 

 

Brain Simulator II: THE GUIDE FOR 
CREATING ARTIFICIAL GENERAL 
INTELLIGENCE  

The companion book to the Brain Simulator II 
software, it contains everything you need to get 
started experimenting with Artificial General 
Intelligence (AGI).  This book includes descriptions of 
several spiking neuron models, the User Interface, 
the Neuron Engine, and Software Modules for 
functioning neuron clusters, and AGI applications.  

172 pp. 2021 

 

Will Computers Revolt? 
PREPARING FOR THE FUTURE OF 
ARTIFICIAL INTELLIGENCE 

This award winning and well-reviewed book, 
Describes the When? Why? and How Dangerous? of 
future computers which will exceed human abilities. 
It is not all doom and gloom, but there are actions 
we should be taking now! 

2nd Edition, Updated and Expanded, 360 pp. 
Coming in May 2021 

 

 

Computer Aided Design of Printed 
Circuits: THE GUIDE FOR EVALUATING, 
PURCHASING, AND USING COMPUTER 
AIDED DESIGN SYSTEMS 

From defining what printed circuits are, to how a 
computerized printed circuit design system works, to 
explaining the hardware and software of the system, 
and acquiring and using the design system, this book 
will give the reader a complete understanding of the 
process.   

357 pp. 1987, Currently out of print. 

 



 

 

QuickStart Circumnavigation 
Guide: PROVEN ROUTE AND SAILING 
ITINERARY TIMED FOR WEATHER 

Dreaming about Sailing the Seas?  Get ready to get 
off the dock and sail YOUR OWN WORLD CRUISE! In 
this adventure of a lifetime, Capt. Charlie and Cathy 
Simon spend 14 months visiting five continents, 16 
countries and crossing three major oceans, plus, 
many Seas sailing a 26,000-mile circumnavigation in 
2014-15.  It is easy to read, well organized, and 
entertaining. 

166 pp. 2016 

 

The ARCTIC CIRCLE Northwest 
Passage Guide: SATELLITE- MAPPED 
SAILING ITINERARY  

This second book in the World Sailing Guru series 
follows the adventures in the ice of world 
circumnavigators Captain Charlie and Cathy Simon 
as they sail their way with their crew of world sailors 
through the legendary Northwest Passage of the 
Canadian Arctic and Alaskan Arctic in 2017. 
Returning to the US East Coast via the iconic Panama 
Canal the book includes their passage notes of the 
circumnavigation of the North American Continent in 
2018.   

204 pp. 2020 

 

Charles J. Simon, Memoir:  
AMERICAN PORTRAIT OF A 
PIONEERING SAN FRANCISCO FAMILY  

Beginning in the 1800’s the Simons and the 
Schoenfelds made their fortunes in and around San 
Francisco, California. From Civil War restrictions, to 
taking passage on the first transcontinental railroad 
train, the Great 1906 earthquake and fire, the 
Panama–Pacific International Exposition in 1915 
celebrating the completion of the Panama Canal, to 
today’s technology endeavors my family has played 
a part.  The book showcases spectacular San 
Francisco events. 

145 pp. Coming in May 2021  

 
 



Preface: Computers I Have Known   3 
 
  



 
 

Also by Charles Simon 

Visit https://futureai.guru/founder.aspx for a complete 
publication list.  

 

Software/Hardware, Charles Simon 
The Brain Simulator II 

The BRAIN Simulator: Tutorial Software for Neural Circuit 
Design 

EEG System (Brainwave Monitoring) 

EMG EP, neurodiagnostic software  

Synthetic Intelligence 

Cynthia Voice-activated Intercom 

3-D ComputerScape 

3-D MiniCAD for Windows 

3-D Mouse 

Continuum: Software for Enterprise CAD 

Printed Circuit CAD Graphics 

Committee Boat Suite (Software for Sail Racing Support) 

Flying Media: Museum Interactive System 

Passport to Discovery: Museum Interactive System

https://futureai.guru/founder.aspx


Preface: Computers I Have Known   5 
 

 
 

BRAIN 
SIMULATOR II 
 

THE GUIDE FOR CREATING  
ARTIFICIAL GENERAL INTELLIGENCE 

 
CHARLES J. SIMON 

 

 
FutureAI Press 

Washington, DC 

 
 

http://brainsim.org   



 
 
 
 
Published, April 21, 2021, in the United States by FutureAI Press, 
455 Massachusetts Ave NW #120, Washington, DC, 20001, info@futureAI.guru 
 
Copyright © 2021 Charles J. Simon, all rights reserved. Except for use in a review, no part of 

this book (except licensed content as noted below) may be reproduced in any form or by any 
means, electronic or mechanical, including photocopying, recording, and by any information 
storage or retrieval system without written permission of the publisher. Images and other items 
marked as being included under a Creative Commons (“CC”) license may be reused under that 
license. 

 
ISBN-13 (eBook): [TBD] 
ISBN-13 (Paper): 978-1-7326872-4-0 
Printing Version: 9/25/2023 
First Edition 
 
Book Sales, worldwide through Amazon. 
 
 
Some of the images in this book are available for use under various Creative Commons 

licenses. These licenses require that URL links to the license text accompany the use of the 
photograph. For reference, the license URLs are as follows: 

CC BY 1.0 https://creativecommons.org/licenses/by/1.0 
CC BY 3.0 https://creativecommons.org/licenses/by/3.0/ 
CC BY-SA 2.0 https://creativecommons.org/licenses/by-sa/2.0 
CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0 
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0 

  



Preface: Computers I Have Known   1 
 

Table of Contents 
Preface Computers I Have Known ................................................... 1 
Introduction ..................................................................................... 9 

What makes the Brain Simulator II Unique? ............................. 9 
About the Brain Simulator II Project ......................................... 9 
Who Should Read this Book? .................................................. 10 
The Structure of this Book....................................................... 11 
Getting the Brain Simulator .................................................... 13 
Video Links .............................................................................. 14 

Chapter 1: Brain Simulator II Strategy OR  How to Create AGI ...... 15 
Development Philosophy ........................................................ 15 
The Reasoning Behind the Brain Simulator............................. 16 
The Intelligence Model ............................................................ 17 
The Neuron Engine, User Interface, and Modules .................. 19 
What, no Backpropagation? .................................................... 20 
Video Links .............................................................................. 20 

Chapter 2: Modeling Neurons and Synapses ................................. 21 
The Biological Neuron ............................................................. 22 
The Integrate and Fire Model ................................................. 25 
Adding Leakage ....................................................................... 27 
Randomness and Noise ........................................................... 29 
The Burst Neuron .................................................................... 30 
The Always Firing Neuron Model ............................................ 31 
The Hebbian Synapse .............................................................. 31 
Adding Timing (Refractory & Propagation Delays) ................. 34 
Short-Cut Models .................................................................... 36 
Differences between Brain Simulator and biological neurons 37 
Video Links .............................................................................. 41 

Chapter 3: AI is Like Your Brain: DEBUNKED .................................. 43 
Neurons ................................................................................... 44 
Synapses .................................................................................. 48 



 
Backpropagation ..................................................................... 50 
Summary ................................................................................. 51 
Video Links .............................................................................. 52 

Chapter 4: Applications of Neurons ............................................... 53 
Digital Logic in Neurons ........................................................... 53 
Frequency/Rate Detection ...................................................... 56 
Four Memory Mechanisms ..................................................... 59 
Axon Delays ............................................................................. 63 
Video Links .............................................................................. 65 

Chapter 5: Networks ...................................................................... 67 
What’s in a Network File ......................................................... 68 
The Clipboard .......................................................................... 71 
List of Current Networks (v1.0) ............................................... 71 

Chapter 6: Modules ........................................................................ 73 
Using Modules for Interfaces to the World ............................ 76 
Using Modules for Computational Efficiency .......................... 76 
Using Modules for Functions That are Difficult in Neurons .... 77 
List of Current Modules (v1.0)................................................. 78 

Chapter 7: The User Interface ........................................................ 83 
Overall Layout ......................................................................... 83 
Controlling Network Files ........................................................ 84 
Controlling the Neuron Display ............................................... 88 
Controlling the Neuron Engine ................................................ 92 
Editing Networks ..................................................................... 94 
Synapses .................................................................................. 98 
Clipboard ................................................................................. 99 
Other Selection Functions ..................................................... 103 
Firing History ......................................................................... 104 
Multiple Servers .................................................................... 106 
Keyboard Shortcut Summary ................................................ 107 
Help and Support .................................................................. 107 
Video Links ............................................................................ 108 

Chapter 8: The Programming Interface ....................................... 109 
The Neuron Engine interface ................................................ 109 
Adding a New Neuron or Synapse Model ............................. 110 



Preface: Computers I Have Known   3 
 

The Module Interface ............................................................ 111 
Are you Cheating? The Limits of Plausibility ......................... 113 

Chapter 9: The BasicNeurons Network ........................................ 115 
Purpose: ................................................................................ 115 
Things to Try: ......................................................................... 120 
Build Your Own Network: ........... Error! Bookmark not defined. 
Current State of Development: ............................................. 120 

Chapter 10 The Hebbian Synapses Network ................................ 123 
Purpose: ................................................................................ 123 
The Complexity of Synapse Plasticity: ................................... 124 
Things to try: ......................................................................... 124 
Current state of development:.............................................. 129 

Chapter 11: The Universal Knowledge Store ............................... 131 
A Brief Introduction to Knowledge in Neurons ..................... 131 
The NeuralGraph ................................................................... 141 
Enter the Universal Knowledge Store (UKS) ......................... 143 
The UKS and AGI .................................................................... 148 
The UKS Dialog ...................................................................... 150 
Summary and Future Development ...................................... 150 
Video Links ............................................................................ 152 

Chapter 12: The Simulator,  Mental Model, and Planning .......... 153 
The Simulator ........................................................................ 153 
The Internal Mental Model ................................................... 157 
Imagination ........................................................................... 159 
Planning ................................................................................. 161 
Application 1: Vision, Associating Words and Objects .......... 161 
Application 2: Maze / Learning by Trial and Error ................ 163 
Video Links ............................................................................ 166 

Chapter 13: Brain Simulator Performance on Multicore and 
Multiserver Systems .......................................................... 169 

Background ........................................................................... 170 
The Simplest Neural Algorithm ............................................. 175 
Performance in a Multicore Environment ............................ 177 
Conclusions for Server Configuration.................................... 180 



 
Performance in a Multi-Computer Environment .................. 181 
Discussion .............................................................................. 183 
Simulating the Entire Neocortex ........................................... 184 
Video Links ............................................................................ 186 

Chapter 14: Future Development ................................................ 187 
Glossary ........................................................................................ 189 
Index 193 
About the Author ......................................................................... 196 

 



1 

1 

 

Preface: 
Computers I Have Known 

 
When I was a senior in high school, one of the math teachers 
wangled a gifted-students grant and ran an after-school class in 
computer programming. He’d taken a course the previous semester 
so had at least a few months’ head start on his students, there were, 
perhaps, a dozen of us. The grant included an allotment of computer 
time on the University’s new IBM 360. Computer time was charged 
by the second and we were allowed to submit card-decks which 
would be run overnight and receive printouts in the morning. The 
teacher would do this once a week…consider the impossibility 
waiting a week for a typo to be flagged so you could correct it and 
resubmit the deck. 

Also, in my senior year, I was part of a program which allowed 
me to take one class at the University. While most of my cohorts in 
the program were taking Western Civ, I signed up for Physics 4 (for 
majors). Since I was driving out to the University four days a week, 
and my father’s faculty parking permit was clear across the campus 
from the physics lecture hall, I was nominated to detour through the 
basement computer facility and deliver the cards and pick up the 
printouts whenever I could.  This also gave me the ability to spend 
more time punching up program card decks. 

At that time, the language of choice for scientific programming 
was FORTRAN while for business it was COBOL—we only learned 
FORTRAN. There was a student-version of FORTRAN from the 
University of Waterloo called WATFOR which ran on the 360 and 
kept us on the straight and narrow. The more generic FORTRAN IV 
was more powerful but less forgiving, powerful enough that little 
errors could require a complete system restart. It wasn’t too long 
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before one of the enterprising students realized that he could insert 
Job Control Language cards into the program deck which would 
terminate WATFOR and fire up FORTRAN IV and then request tapes 
to be loaded or get access to disk drives and on and on, and the 
computer operator would dutifully comply because they didn’t 
really have a way of knowing where the requests were coming from.  

After these shenanigans, we were on the lookout for alternative 
computer resources and we discovered the IBM 1130 in the physics 
department. Time on that computer wasn’t charged anywhere as far 
as we could tell and as long as advanced physics students weren’t 
around, we could do whatever we liked. 

The school district had an IBM 1401 which was used to process 
grades etc. and we had a tour and got the manager to let us use it in 
slack time. It was a few refrigerator-sized cabinets and had an add-
on washing-machine which had an additional 4K of memory. It had 
a FORTRAN II compiler which was so slow we only used it once. It 
took 15 minutes to compile one of our simple card-decks.  

My success in the physics class allowed me to transfer to UC Davis 
which, at the time, was the most popular campus in the popular UC 
system. The main computer there was a Burroughs 6700 which had 
Remote Access! You didn’t have to work with card decks, you could 
write your program at a terminal and it might run only a few minutes 
later. With each class which required computer work, I’d get an 
account with a limited amount of computer time. As I was never 
meticulous enough to get programs to run the first time, once again, 
I had to hunt up addition computer resources. 

The Electrical Engineering Department had a Xerox Sigma 7 
computer and the department chair was using it to build an array 
processor, the forerunner of todays GPU graphics chips. Once again, 
if I was willing to work around everyone else’s schedule, I could use 
the machine as much as I liked. I recall one of the early assignments 
was a version of the now-famous Travelling Salesman problem with 
the objective of finding the most efficient route for visiting a number 
of destinations. The problem is now famous because it is an example 
of an intractable problem where the required number of 
computations goes up as some power of the number of candidate 
destinations. 
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The Sigma computer lab was shared by two analog computers. 
These were programmed by plugging wires into a patch panel and 
could solve some classes of differential equations among other 
things. Within a few years, analog computers were completely 
obsolete because it became possible to simulate the analog 
computer faster and more accurately on a digital computer. 

Midway through my first quarter at Davis, my roommate struck 
gold (or perhaps copper). A few years earlier, all of the telephone 
switching systems in the dorms had been replaced and the racks of 
cast-off telephone relays were languishing in a barn (Davis had a big 
Ag school) where they hadn’t been able to interest a scrap dealer to 
recycle them.  We took the relays over to Electrical Engineering and 
got independent study credit for building a computer out of them. 
After months of soldering, the thing clattered away and could add 
and subtract in a rack about the size of a tall bookcase.  

The following year, we acquired a teletype and a paper-tape 
reader/punch and interfaced them so the relay computer could 
clatter away in two desk-sized racks and output messages. The 
problem was that the teletype needed pulses about 8ms long while 
the telephone relays weren’t able to do anything in less than 12ms. 
To make an 8 ms pulse with 12 ms relays, you can’t speed them up 
but you can slow them down. You start the pulse with a 12 ms relay 
and end it with on which has been slowed down to 20 ms.  Turns out 
that you can make arbitrarily short pulses with arbitrarily slow 
devices—but it takes a lot of relays.  

Now, time-travel into the present where I’m studying how the 
human brain works and speculating on why over 65% of your brain 
is involved in controlling your body while less than 20% is involved 
in thinking. The answer is the same as for the telephone relays, 
neurons are slow relative to the signals your body needs for quick 
actions. So, it takes a lot of neurons. 

In my senior year of college, I took a graduate seminar in 
computer graphics and created a drawing system as the class project 
but computer resources were still an issue. We were given a small 
account for the course but it wasn’t nearly enough. On the upside, to 
encourage general student computer use, every student was given a 
$10 account to access the central computer. Many students had no 
interest so I went down the hallway in the dorm, knocking on doors, 
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and getting friends and neighbors to give me the username and 
password for their gratis accounts. $10 wasn’t enough to accomplish 
much but there was a quirk in the Burroughs operating system; it 
only checked your available account balance when you logged in. So 
armed with a page of accounts, I could go to the terminal room, log 
in, and use a terminal until I got too sleepy to continue. If the central 
system crashed, I’d need to get out a fresh account because each $10 
account would burn through in less than an hour of connect time. I 
got an A on the project. 

When I graduated, I had plenty of job offers because EE grads 
were in short supply.  Said I to myself, “I can get a job any time,” so I 
turned them all down and started my own company to do CAD.  Even 
minicomputers were expensive and the idea was that if the graphics 
were performed on a workstation microprocessor, the 
minicomputer could be shared among many graphics terminals and 
still give snappy performance.  

Graphics terminals with embedded processors were beastly 
expensive ($20K) but I could buy the graphics display for $3K and 
build my own processor. The first prototype was built on an IMSAI 
kit with an 8080 CPU programmed in Assembly Language. That CPU 
could add and move data around but if you needed to multiply, you 
needed to write your own program. Graphics displays require a lot 
of multiplication. 

For storage, in addition to 32K of RAM, I interfaced a floppy disk 
which I could do because I’d been freelancing with a company which 
made disk controllers and also the custom 8X300 microcomputer 
which controlled them. The floppy drives were about the same 
speed and capacity as the hard drive on the IBM 1130 of five years 
earlier. 

For a central computer, we leased an Interdata 7/32 which was a 
clone of the IBM 360. Interdata was chosen initially because they had 
a compiler which would allow multiple users to run the same 
program without having multiple copies of the entire program. This 
is the same idea used by today’s .DLL which every modern program 
uses. As we entered into various marketing arrangements with 
computer vendors, out computer room filled with a variety of 
additional computers: Perkin Elmer, A DEC VAX/750, and computer 
from Harris and others. 
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On the microprocessor front, IBM came out with the original PC 
and we bought one for home. It had dual floppy drives, 640K of RAM 
and a monochrome screen with a green phosphor. These were 5¼“ 
floppies while we were still using the 7” floppies for the smart 
graphics terminals at work. The lack of a hard drive made the 
machine close to unusable, so I eventually replaced one of the floppy 
drives with a 5Mb hard drive. 

After this, there came a series of progressively more powerful 
desktop machines. In 1988, I got the FORTRAN compiler for MS-DOS 
and wrote the original Brain Simulator. It worked within the 640K 
RAM limit and so would only support 1,200 neurons as compared 
with the current implementation which supports billions. It could 
process the neuron array a few times per second which is at least 
within a few orders of magnitude of the speed of the biological 
neuron which and spike 250 times per second. 

Working on my master’s degree, I took a course in parallel 
processing. I don’t recall the brand of computer, but it had 16 PC-
equivalent processor boards. I implemented the Brain Simulator and 
a few other programs in parallel, experience which has stood me in 
good stead to this day. The Brain Simulator II works seamlessly 
across the multiple cores of today’s CPUs and can extend via a 
network to any number of physical machines. 

Windows 3 came out and I got a copy. It was unreliable and slow 
but sometimes worked. Then I got a contract in Silicon Valley 
working on a Windows application and it completely changed my 
point of view. Instead of being concerned about the unreliability, I 
was impressed than anything worked at all. The early Windows 
releases were based on the assumption that applications would be 
cooperative and well-behaved. Of course, programs are NOT bug-
free, and the slightest problem in any app could bring down the 
entire system, leading to the infamous “Blue Screen of Death.” When 
Windows NT was developed, it was managed by the architect of the 
VAX/750 OS, VMS, which was way ahead of its time, and he knew 
what he was doing so NT was a reasonably stable and reliable 
system. Much of it survives in today’s versions of Windows. 

Windows 95 was the last of the non-NT lineage and I was called 
into Microsoft to help with applications to give Windows 95 users 
something useful to do. This was concurrent with the emergence of 
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the Internet and Microsoft figured out, at the last minute, that 
content and a browser were as important as an application on a local 
machine. So, they invented MSN, the Microsoft Network, to host a 
number of useful applications. These included Expedia and the news 
site I worked on which was started as MSN News, then became a 
joint venture with NBC dubbed MSNBC, and is now the website of 
NBC News. Over the two years I worked there, it was the largest 
news site on the web and we celebrated when we exceeded a million 
unique visitors in a day.  

Large websites like MSNBC.com are distributed across an array 
of servers and the interesting technical problem was how can you 
build a large site across numerous servers and not break all the page 
links whenever you updated the site because the updates would 
necessarily arrive at different servers at slightly different times. We 
wanted to update the site any time whenever a news story broke so 
you can imagine that a user who viewed a page from one server, 
followed a link which landed on a different server, you’d like to have 
that link go somewhere useful even if a site update had occurred in 
the interim. In those days, we had to develop systems just to get new 
content onto a server. Whew! 

After MSNBC, I returned to neurological testing at Cadwell. I’d 
previously written software for the first paperless EEG system, for 
measuring brainwaves. It was under DOS and we were still rolling 
our own network software so that you could record an EEG on one 
system and view it quickly on another. Once again graphics 
performance had been an issue and I wrote the actual waveform 
display code in low-level assembly language. The neurological test 
development gave me great insight into the functionality of neurons 
which I’ve incorporated into the current Brain Simulator software.  

Today, I sit in front of a three-screen system with 64 cores and 
oodles of RAM. This CPU can execute up to 3 billion instructions in 
the 12 ms it took for one of those telephone relays to switch. Today’s 
CPU is about ten million times faster than the 8080s we used for our 
first graphics terminals. These kinds of numbers are 
incomprehensible. If you could walk 10 millions times faster, you 
could walk around the world in about two seconds. If your brain 
were 10 million times faster, you could have a whole lifetime’s 
experience in a few minutes. If you could do that, what would you do 
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with the rest of your lifetime? That’s the type of question I’m 
working on today with the Brain Simulator. There’s reason to think 
that the coming 50 years will bring the same factors of computer 
speed as the past 50 and the capabilities of such machines is beyond 
imagination.
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Introduction 
What makes the Brain Simulator II Unique? 

Brain Simulator II is a free, open-source software project aimed at 
creating Artificial General Intelligence (AGI). Many important 
features set it apart from other Artificial Intelligence software: 
1. The AGI Strategy. With the primary assumption that no one 

knows specifically how to create AGI, the Brain Simulator 
implements an experimental platform with a general AGI model 
which is easy to revise. Several spiking neuron models based on 
biological neurons combine with software “Modules” to create 
any desired functionality for rapid experimentation.  

2. The User Interface. The graphical display of neurons and Modules 
lets users explore and modify the internal workings of the 
Network in real time.  

3. The Powerful Spiking Neuron Engine. Tested with a billion neurons, 
the Brain Simulator can process up to 2.5 billion synapses per 
second on a desktop computer. Networks can also be distributed 
across a LAN with estimates of neocortex equivalence with only 
160 servers. 

4. Software Modules and Applications. To speed AGI development, 
over 50 Modules perform a variety of AI tasks. Combined with 
the Neuron Engine, applications already demonstrate vision, 
mobility, internal modeling, language, and planning. 

The Brain Simulator implements an artificial entity named 
“Sallie” who lives in a simulated world and can integrate input from 
multiple senses. She can recognize objects with binocular vision and 
associate them with words she hears, plan a sequence of actions, and 
manipulate objects to achieve a goal. As she advances to 
understanding her world, interfaces already exist for cameras, 
microphones, and robotic control to bring AGI to life. 

About the Brain Simulator II Project 

This book is about The Brain Simulator II, a free, open-source 
software project aimed at creating an end-to-end Artificial General 
Intelligence (AGI) system. AGI is a loosely defined concept meaning 
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computer systems can respond in the same ways that as intelligent 
humans across a broad spectrum of situations. This contrasts with 
Artificial Intelligence (AI), which can often exceed human abilities 
but only in very limited situations (also called “narrow” AI).  

In contrast with AGI, narrow AI performs poorly in the basic 
abilities common to any three-year-old. Just playing with blocks 
implies an understanding that physical objects exist and persist even 
when you can’t see them, an understanding of gravity and the 
fundamental physics of solid objects, and a basic understanding of 
cause and effect and the passage of time—all absent from the typical 
AI.  

The Brain Simulator II and its approach to AGI are significantly 
different from typical AI approaches. It is based on the reasoning 
that since we don’t know precisely how AGI will work, and since our 
only AGI model today is the human brain, that studying brain 
functions and building biologically plausible approaches will lead to 
a quicker development of AGI. 

My recent book, Will Computers Revolt?, discusses the potential 
dangers of AGI and how we can mitigate them. The fact that such a 
discussion is absent from this book is in no way an indication that 
AGI won’t be dangerous or that caution is unnecessary. If AGI danger 
is your primary concern, I suggest you read that book instead. But 
this book does contribute to that conversation by showing methods, 
available today, which will contribute to AGI—meaning that AGI is 
not some far-off fantasy but will be upon us sooner than most people 
think. Further, the basic structure of AGI, introduced here, illustrates 
where AGI can be controlled and limited for the benefit of mankind 
rather than our  demise. 

Who Should Read this Book? 

You will find this Brain Simulator II book interesting if you are: 
• Interested in the capabilities and limitations of neurons 
• Interested in Artificial General Intelligence 
• A neuroscientist 
• A cognitive scientist 
• Interested in learning about spiking AI software 
• A programmer interested in Artificial General Intelligence (AGI). 
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In addition to the explanations in this book, I have made 
numerous videos (available on YouTube) that address individual 
features of the project. I have included links at the end of each 
chapter to the relevant videos. 

You will not find The Brain Simulator II interesting if you are 
looking for explanations of traditional Artificial Intelligence 
methods. The reason? The point of the Brain Simulator is to 
experiment with different ways of approaching Artificial General 
Intelligence. While there are numerous excellent books and 
software which explain and support Deep Learning and related AI 
approaches, in the intervening 40+ years since their introduction, 
traditional AI methods have produced interesting results but have 
not made much progress toward the common-sense intelligence 
enjoyed by any three-year-old. 

The Structure of this Book 

The book starts off with the development philosophy and the next 
six chapters (2-7) describe the Brain Simulator in greater detail, 
beginning with Neuron Models in Chapter 2. The Brain Simulator 
implements an array of millions or billions of simple neurons which 
can be computed in real time on a powerful desktop computer. Each 
neuron’s behavior is dictated by the selection of one of several 
neuron simulation models. This chapter describes each of the 
models currently implemented and describes why you might want 
to use it. The internal code of a neuron model is not particularly 
complex and additional models can be added to the simulator as 
needed.  

The distinction between biological neurons and traditional AI is 
highlighted in Chapter 3, “AI is Like Your Brain: DEBUNKED.” This 
chapter shows how traditional AI techniques cannot possibly 
represent biological neurons because the underlying ideas are not 
possible in a biologically plausible world. Further, the simulator is 
designed around some features which are unique to biological 
neurons. While it would be possible to implement the idealized 
neurons of traditional Artificial Neural Networks (ANNs), such an 
implementation has not been pursued here because it would not be 
particularly efficient or enlightening. 
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For most people, it is not intuitively obvious how simple neurons 
can be harnessed together to perform useful functions. Chapter 4, 
“Applications of Neurons,” shows several relatively simple 
combinations of neurons that work together to perform digital logic 
functions and several types of memory. 

Arrays of neurons with their connections are stored in files called 
“Networks” which are described in Chapter 5. Within the Brain 
Simulator, information from one network can be included in other 
networks. This means that if you create some useful functionality in 
a small number of neurons, replicating this functionality many times 
is a fairly simple prospect. Most of the networks included with The 
Brain Simulator II perform relatively simple functions; the idea 
being that general intelligence will be created from millions of 
instances of a small number of unique, but fairly simple, neural 
circuits. This chapter includes a list of the Networks which are 
included with the program at the time of writing. 

“Modules” form a key component of The Brain Simulator II, as 
explained in Chapter 6. It doesn’t take much experimentation to 
learn that many functions which we presume to be simple are, in 
fact, difficult to implement in biological neurons. Enter the Module, 
which allows programmers to create custom computer code for any 
cluster of neurons. 

This allows for three valuable uses: 1) Modules can implement 
the “rules” which govern the creation of connections for vast arrays 
of neurons; 2) Modules can be vastly more efficient than neurons for 
certain processes; and 3) Modules can be used to implement 
functionality for which neural implementations are yet to be 
determined. As an example: we don’t know how binocular depth 
perception works in the brain, but within a module, we can use 
trigonometry to perform similar functionality. The chapter includes 
a list of the Modules which are included with the system at the time 
of writing. 

Unique to The Brain Simulator II is the user interface as described 
in Chapter 7. You can examine and modify a neuron network while 
it is operating to design useful functionality. You can add or modify 
synapses and neuron parameters on-the-fly. And once created, 
neural circuits can be repeated, moved, saved, edited…anything you 
need. 



Introduction   13 
 

Chapter 8 gives an overview of the programming interface. It 
explains how you might approach writing your own neuron models 
or Modules but details are left to the source code. Also, as the Brain 
Simulator is an open-source project, programmers are encouraged 
to add capabilities to the underlying user interface and Neuron 
Engine. 

Chapter 9 explains some of the basic neuron networks included 
with the download. Highlights include several ways neurons can be 
configured as digital circuits, different ways that neurons can store 
information, and some of the capabilities and limitations of the 
various neuron models. Chapter 10 expands on this idea showing 
how variable synapse weights can expand the scope of neural 
circuitry. 

The Universal Knowledge Store (UKS) is a set of Modules which 
can create relationships between disparate types of information. 
Chapter 11 explains how classic graph structures can be 
implemented in neurons (the genesis of the Modules). Chapter 12 
then demonstrates how the UKS can be used with sample 
applications: 1) learning words associated with visual input and 2) 
navigating mazes. 

One presumption of the Brain Simulator is that large numbers of 
neurons will be needed. Accordingly, the neuron models of the 
simulator have been optimized to work in multi-core and networked 
multi-computer implementations. Chapter 13 details the 
performance of the Brain Simulator in various configurations and 
projects the number of servers needed to emulate the entire human 
neocortex. Finally, Chapter 14 describes the current state of 
development and directions for future development.  

So, the Brain Simulator is offered as an alternative. Accepting that 
no one knows precisely how to create a general intelligence system, 
the Brain Simulator is an experimental platform that begins with 
biological plausibility but enables shortcuts and extensions which 
can take advantage of the capabilities of today’s CPUs. 

 

Getting the Brain Simulator 

You can download an executable free at http://brainsim.org. The 
download includes network files that demonstrate the features 

http://brainsim.org/
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described later in this book. You can do a lot with the Brain Simulator 
without any programming experience. The Brain Simulator runs on 
Windows 10, although some work has begun to create a Linux 
version. 

If you are a programmer, you can also download the source code 
to glean more about how neurons and the simulator work. It is 
available at: https://github.com/FutureAIGuru/BrainSimII. Working 
with the source code to create your own modules or extend the 
neuron models requires Visual Studio; you can download the 
Community Edition free from Microsoft at: 
https://visualstudio.microsoft.com/downloads/. 

If you are knowledgeable about the workings of today’s Artificial 
Intelligence, you may be frustrated to discover that few of today’s AI 
algorithms and constructs are included in the Brain Simulator. This 
is not because of some oversight but because today’s AI has very 
little to do with the way a biological brain works. The algorithms of 
today’s Artificial Neural Networks are based on a continuous neuron 
model which has little to do with actual spiking neurons. The 
primary backpropagation algorithm has no biological analog 
whatsoever. Both backpropagation and continuous neuron models 
could be implemented within the framework of the Brain Simulator’s 
neuron model and module structure but these have been extensively 
explored on other platforms. 

The traditional AI approaches of today were developed into 
ANNs decades ago. If those algorithms had led to general intelligence 
in the intervening forty years, we would have discovered a different 
form of intelligence from the brain’s. Having not achieved that goal, 
the Brain Simulator is an effort to return to the biologically inspired 
roots of AI. 

Video Links 

Many chapters are followed by links to related videos I have created. 
For a listing of all the related videos, go to: http://futureai.guru/videos   

“Brain Simulator II Overview” 
http://futureai.guru/videos?id=141 
 

https://github.com/FutureAIGuru/BrainSimII
https://visualstudio.microsoft.com/downloads/
http://futureai.guru/videos
http://futureai.guru/videos?id=141
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Chapter 1: 
Brain Simulator II Strategy 

OR  
How to Create AGI  

The Brain Simulator II contains innovative ideas toward creating 
Artificial General Intelligence (AGI). This is an ongoing research 
project. So rather than waiting for a "finished" version, I present the 
current state of development. I welcome suggestions, comments, 
and participation. 

 
The Brain Simulator II is a PROJECT, not a PRODUCT. The project is 
FREE and OPEN SOURCE. Overall, the project is implementing the 
software architecture described in the book, Will Computers Revolt? 
and briefly described in this chapter. 

This description is accurate as of the v1.0 release of The Brain 
Simulator II. The user interface and the Neuron Engine are relatively 
stable while the library of networks and software modules will likely 
change substantially and expand on a continuing basis. 

Development Philosophy 

We don’t presently know precisely how to create Artificial General 
Intelligence. I’ll describe many ideas in this chapter but their 
implementation is not well defined. Since we don’t have all the 
answers, the Brain Simulator is an experimental platform. It’s easy 
to try out new ideas and learn where improvements are needed. The 
Brain Simulator II allows experimentation with different neuron 
algorithms, different network designs, and higher-level Module 
software. 

The source code download includes many features which are 
previews of future abilities, experiments that have been superseded, 



16   Brain Simulator II: The Guide for Creating AGI 
 
and ideas that are still under development. The development 
technique follows the AGILE software development process of 
creating solutions for the simplest cases first. After these work, 
algorithms are generalized to handle more cases. 

Productized software is certainly a possibility. But with an 
overall objective of creating AGI, there is no reason to expect that the 
project will be “complete” in the foreseeable future. Accordingly, it 
is written in such a way that there is no limit to the features which 
can be easily added. 

The project adopts the incremental development aspect of AGILE 
software engineering. That is, it is important to develop software for 
a single use-case before addressing the myriad of use cases that an 
AGI is destined to encounter. This means there is already a single 
end-to-end path that could represent the mechanism of an AGI but 
with just a few use-cases.  

The Reasoning Behind the Brain Simulator 

You have to start somewhere! If we wait for a complete 
understanding, with robust mathematical models of AGI, we may 
never start. The Brain Simulator is based on reasoning about how 
general intelligence must work along with a recognition of the 
limitations of our knowledge. 
1. No one knows, precisely, how to create AGI, hence a more 

experimental and iterative development approach. 
2. Human intelligence and thinking occur in the brain and more 

specifically, the neocortex. This sets some limits on the size and 
complexity of the AGI problem. 

3. Intelligence occurs in neurons as a result of their digital 
(spiking) function. This directs the Brain Simulator into areas of 
development outside of AI’s classic perceptron/-
backpropagation approach. 

4. Intelligence has evolved since early man but the brain’s 
structure has not. Rather than beginning with chess-playing, 
mathematics, or immense language skills, this project starts with 
basic techniques of finding one’s way or understanding cause 
and effect. 

5. AGI is not as big a development task as most think.  
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a. DNA defines initial brain structure but not much DNA data 
is devoted to neocortex formation. Therefore, the brain 
(and an AGI) must be possible with repeating patterns of 
simpler neural circuits or simple rules which govern 
synapse creation. 

b. Brain capacity is bounded by neuron counts. 
c. Counts of sensory and motor nerves bound the incoming 

and outgoing data rates. 
d. These limitations set a maximum complexity for the brain 

and hence for an AGI.  
6. AGI Requires Robotics. Without interaction with the real world, 

artificial intelligence will always be narrow. The real world is so 
variable and complex that simulators can speed development. 

7. AGI can be created from existing hardware. 
a. Enough performance is available from today’s hardware. 
b. Some subset of human performance could qualify as AGI. 

8. AGI will not be like human intelligence. Human intelligence 
develops within the context of human goals, emotions, and 
instincts, which would form a poor basis for AGI. 

Some of the reasoning above is currently subject to dispute and 
may eventually prove to be in error. But that’s the point. The 
development of the Brain Simulator can help settle philosophical 
disputes one way or another. At the same time, the structure of the 
Brain Simulator is flexible enough to adapt to new information as it 
becomes available.  

The Intelligence Model 

The Brain Simulator II implements a simulated entity named “Sallie.” 
Although it’s fun to refer to any artificial entity by name and ascribe 
various intelligent attributes, Sallie has nowhere near the scope of 
capabilities needed for AGI. The following capabilities are necessary 
for AGI and may prove to be sufficient as well. Sallie can do all of the 
following things but in a limited way: 

1. Sense her environment (input). 
2. Act on her environment (output). 
3. Have internal rules or goals. 
4. Analyze inputs to make sense of her environment. 
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5. Remember (learn) combinations of inputs and actions and 
their qualitative results. 

6. Internally model her environment in three dimensions. 
7. Simulate possible actions and select for positive predicted 

results. 
8. Perform these actions with sufficient speed and magnitude to 

respond to real-world conditions in useful timeframes. 

Each of these has been implemented to some extent. For example, 
portions of the project can sense inputs from cameras and 
microphones and control a minimal robot, so Sallie can accept voice 
commands and “see” in some minimal sense. To date, however, 
Brain Simulator development has been primarily based on a 
simulated world…the real world just has too many variables and is 
not repeatable. The initial implementation uses a two-dimensional 
environment, although a simulated three-dimensional environment 
has been prototyped. 

 
This block diagram, from Will Computers Revolt? shows the major building 
blocks for a generally intelligent entity to implement the eight necessary 
components of intelligent behavior. It includes an Object Store (implemented as 
the Universal Knowledge Store explained in Chapter 10), input and output 
processing, and a 3D model of the entity’s surroundings. 

To further illustrate the simplifications, consider that Sallie can 
only recognize two types of physical object. She can remember these 
in her internal memory so she knows where objects are, even when 
she can’t see them. She can remember landmarks and use that 
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memory to plan her route to goals within a maze. She can act on her 
simulated environment by moving objects and, in one 
demonstration, can move an object to achieve a goal. She can learn 
to associate words with the objects she knows. 

This is what is meant by an end-to-end prototype with just a few 
use-cases. The system can perform all the functions of AGI but only 
on a tiny number of data elements. Consider that before you learned 
to read, this page would have appeared as a mishmash of symbols—
like looking at a page of Chinese characters (if you don’t read 
Chinese). Sallie’s perception is like that. She can see everything but 
only a few things make sense. 

Many of the functions are hard-coded. For example, Sallie can 
learn to navigate a maze but she cannot learn about mazes because 
the maze-learning process is coded directly. The key is that the 
process of creating the software leads to learning about AGI. The 
maze software relies on the internal mental model and the storage 
of landmarks. Each landmark is a situation in the world at which 
Sallie must make a decision. She can recall the situation, the action 
she took, and the outcome. This concept of triples can be generalized 
to form the basis of planning and reinforcement learning for a much 
more complex AGI. 

The Neuron Engine, User Interface, and Modules 

To establish a bit of terminology, the Brain Simulator supports a vast 
array of simulated neurons connected by synapses. The function of 
simulating neurons and synapses is handled by the “Neuron Engine.” 
The Brain Simulator user interface displays the neuron array (or 
some portion of it) so you can see what’s going on and view or edit 
the pattern of connections. If the Neuron Engine is implemented on 
a different computer from the User interface, it uses an 
implementation called the “Neuron Server”—it’s the same Neuron 
Engine, but with the added ability to handle connections and 
interfaces that cross machine boundaries on a network. 

“Modules” are software shortcuts. A cluster of neurons can be 
considered a Module and neurons are then also under the control of 
the Module’s software. Modules can be useful for input or output. 
For example, one module takes input from a video camera and fires 
its neurons as appropriate to represent the image. Other modules 



20   Brain Simulator II: The Guide for Creating AGI 
 
are useful for computation. For depth perception, for example, we 
know your brain can merge signals from your two eyes and estimate 
the distance to an object. Rather than using neurons to perform this 
action, the Module uses trigonometry and all the power of the 
computer to perform a similar task more easily. 

What, no Backpropagation? 

The Brain Simulator makes no effort to compete with existing 
software packages which implement classic ANN algorithms. The 
intent is to break new ground with new algorithms. The thrust is to 
stay closer to biological plausibility since the human brain is the only 
working AGI model we have, at present. 

After the following chapter describes the neuron models used in 
the Brain Simulator, I will return to this topic with a comparison of 
basic Neural Network algorithms vs. how your brain works in 
Chapter 3, AI is like your brain: DEBUNKED. 

Video Links 

“How to Create AGI” 
http://futureai.guru/videos?id=127 
 
“Brain Simulator II Presentation at AGI-20” 
http://futureai.guru/videos?id=128 
 
“Brain Simulator II Overview” 
http://futureai.guru/videos?id=141 
 
“How your Brain Works …in 5 Minutes” 
http://futureai.guru/videos?id=109 

http://futureai.guru/videos?id=127
http://futureai.guru/videos?id=128
http://futureai.guru/videos?id=141
http://futureai.guru/videos?id=109
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Chapter 2: 
Modeling Neurons and 

Synapses 
The Brain Simulator operates on an array of simulated neurons 
connected by simulated synapses. This chapter focuses on the 
function of neurons and synapses while Chapter 4 describes useful 
patterns of synapses which we’ll call a “Network.” 

You’ll get the most out of the Brain Simulator with a little 
background about how biological neurons function. This chapter is 
just an overview because biological neurons are immensely complex 
and variable. So I’ll focus on a few principles and start with the 
simplest models.  

The problem of understanding neurons is the same as with many 
biological systems—the chemistry which makes them develop and 
function is complex and may be more complex than is necessary to 
replicate with artificial means. To build an “artificial brain”, we need 
to select which capabilities of neurons are necessary to the thinking 
process and which might be extraneous…necessary for the 
biological brain but not essential for thinking. 

Consider creating an artificial heart…it’s a pump. The individual 
cells of the biological heart work together in a coordinated way to 
pump blood. At the same time, these cells “know” how to grow 
within an embryo to create a heart and how to replace themselves if 
needed. Cells are also little metabolic machines that can convert the 
simple sugars and oxygen within the blood into the energy for 
contractions we know as a heartbeat. When we create an artificial 
heart, we don’t worry about individual components of the pump 
carrying the instructions for how to build the entire pump or how to 
replace components when necessary. In the heart, it’s reasonably 
clear that the pumping action can be separated from metabolism, 
“manufacturing”, and “maintenance”. 
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Neurons aren’t so clear-cut. Neurons have a basic spiking action 
(which I’ll detail momentarily), but like the heart, they also carry the 
mechanisms for developing and maintaining the brain. In the brain, 
though, the structure of individual neurons may also contribute to 
the thinking process. For example, which neurons contact one 
another is clearly essential to thinking. On the other hand, there are 
numerous types of neurotransmitters and synapses. Are these 
necessary to the thinking process or only for brain development? In 
addition to neurons, the brain contains glial cells which might 
contribute to thinking or might only be there to guide and maintain 
the brain’s structure. It’s hard to tell. 

Neuroscientists have made great strides in modeling the 
complexity of neural function and several detailed neural modeling 
packages are available which simulate neurons near the molecular 
level. There are two problems inherent in this approach: First, a 
detailed computer model of a neuron contains numerous 
parameters and is necessarily slower, limiting the number of 
neurons which can be simulated at any given time. Second, with a 
focus on the detail of individual neurons, the overall functionality of 
the brain might be ignored. Similarly, a focus on an individual heart 
muscle cell sheds very little light on the overall function of the heart. 

The Brain Simulator takes more of a “top-down” approach. Let’s 
start with the simplest possible neuron models and see what can be 
produced with them. It’s this approach that leads to the ability to 
simulate a billion neurons on a desktop computer and demonstrate 
how even larger networks can be simulated across multiple servers 
on a LAN.  

When considering whether to add a capability to the neuron 
model, I evaluate how much computational power will be added to 
the simulation. For example, recent neuroscience experiments have 
shown that portions of a neuron can perform some basic 
computations. But those computations are the equivalent of adding 
intermediate neurons to the network—so it doesn’t add anything to 
the overall capabilities of the simulator. 

The Biological Neuron 

To begin with the structure of the biological neuron, we’ll start with 
the cell body, which is the center of the action. It has numerous 
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appendages, the “Dendrites,” which can accept incoming signals 
from other neurons. It has a single long axon which branches at its 
destination to numerous synapses that connect to other neurons. 
The axon may be as long as needed to reach the desired destination 
and, as nerve cells within your body are a form of neuron, they may 
be over a meter in length. Within the brain, the average axon length 
is about 10 mm. 

 

 
Diagram of a neuron showing “Inputs” and “Outputs,” which are synapses and 
may count many thousands. The myelin sheath on the axon is only present on 
long axons, which may be 100mm long in the neocortex so this drawing is not 
to scale by several orders of magnitude. Shorter axons in the brain are not 
“myelinated,” which makes them slower but more densely packed and still often 
hundreds of times longer than the cell body diameter. Diagram by Egm4313.s12 
at English Wikipedia / CC BY-SA (https://creativecommons.org/licenses/by-
sa/3.0) 

The primary observable function of the neuron is to emit a spike 
which can be measured as a voltage pulse. This occurs when the 
internal charge exceeds a threshold—and that internal charge is 
accumulated from incoming neurotransmitter ions from adjoining 
neurons. The neuron has a measurable resting voltage. Incoming 
signals from synapses affect the voltage, with excitatory synapses 
increasing the voltage and inhibitory synapses decreasing it. When 
the voltage exceeds the threshold, a spike is emitted. It travels down 
the axon to the destination synapses, which contribute 
neurotransmitter ions to their target neurons. After the spike is 

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
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emitted, there is a “refractory period” during which all the 
neurotransmitters return to their original state so the process can 
repeat. During the refractory period, incoming signals are 
essentially ignored. 

From the diagram, we can observe that the time from the onset 
of the spike to the end of the refractory period is about 4 ms. This 
means that the maximum firing rate of a neuron is about once every 
4 ms or 250 Hz. 

 

 
This diagram of an idealized neural spike shows how the incoming signals 
(ESPS—Excitatory postsynaptic potential) contribute to the membrane 
potential. When the membrane potential reaches the threshold, the neuron 
emits a spike and eventually returns to its resting potential for the process to 
repeat. https://www.researchgate.net/profile/Juan_Pedro_Dominguez-
Morales/publication/329885401/figure/fig2/AS:707709062090765@1
545742397755/Diagram-of-a-spike-generated-by-a-neuron_W640.jpg 

Relative to a computer, the neuron is slow! Slow! SLOW! During 
the 4 ms of a neuron’s firing cycle, my 4 GHz computer can execute 
16 million cycles on each of its 64 cores. Add to that, neural spikes 
travel along the axon at a leisurely 2 mm/ms (walking speed). So a 
signal on an average 10mm axon arrives at its destination 5 ms after 
the spike is initiated at the cell body. The peak of the action potential 
is about 1 ms after threshold detection, so the fastest-possible 
signals through adjacent neurons (assuming no time for the axon 
delay) will induce a 1 ms propagation delay per neuron. 

https://www.researchgate.net/profile/Juan_Pedro_Dominguez-Morales/publication/329885401/figure/fig2/AS:707709062090765@1545742397755/Diagram-of-a-spike-generated-by-a-neuron_W640.jpg
https://www.researchgate.net/profile/Juan_Pedro_Dominguez-Morales/publication/329885401/figure/fig2/AS:707709062090765@1545742397755/Diagram-of-a-spike-generated-by-a-neuron_W640.jpg
https://www.researchgate.net/profile/Juan_Pedro_Dominguez-Morales/publication/329885401/figure/fig2/AS:707709062090765@1545742397755/Diagram-of-a-spike-generated-by-a-neuron_W640.jpg
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The Integrate and Fire Model 

The Brain Simulator simulates a vast array of neurons…how vast 
depends on the machine and network limitations but it has been 
tested with a billion neurons. Each neuron can have any number of 
synapses connecting it to other neurons. Each neuron can be 
referenced by its “index” (or “Id”) which is simply its position within 
the array. The array is presented in the user interface as being 
rectangular, implying row and column position relationships, but 
this is a convenience for visualization. For performance reasons, 
within the simulator, neurons are stored in a single, one-
dimensional array and so have a single numeric Id.  

Each simulated neuron has one principal function, it spikes, and 
two key features: 1) It carries an internal value and 2) a list of 
synapses to which it is connected. Each synapse consists of the Id of 
a target neuron and a weight. Both the neuron and the synapse carry 
additional, lesser features that will be covered later. 

The primary function of a neuron is to emit a spike dependent on 
the inputs it receives. The way it “decides” to emit a spike depends 
on the “model.” The Brain Simulator supports any number of models 
and new ones can be added easily. We’ll start with the simplest, 
Integrate and Fire (“IF”). 

The Neuron Engine can evaluate every neuron just once in a 
“cycle”. For now, we’ll assume that the cycle time is equal to the 
refractory period (4 ms) and that all neuron firing is synchronized. 
Later, I’ll explain how to relax this limitation for greater precision. 

Considering the basic IF model, here is how the neurons work. 
Each neuron is evaluated to determine if the internal value exceeds 
a threshold. If it does, then the synapses list is processed and the 
weight of each synapse is added to the internal value of the 
corresponding target neuron. The synaptic weight can be positive or 
negative, either contributing to (“excitatory”) or subtracting from 
(“inhibitory”) the neuron’s internal charge. 
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Illustrating the “Integrate and Fire” model. The randomly firing neurons “A” and 
“B” are connected to neuron “O” with synapse weights of 0.25. In the diagram 
above, whenever A or B spikes, you can see the internal charge of O increase 
somewhat (the bottom line in the History window). On the fourth incoming 
pulse, O reaches its threshold, emits a spike of its own, and resets its internal 
charge to 0.0. 

For convenience, the resting state of the neuron is defined as 0.0 
and the threshold is defined as 1.0—these are different from the 
actual voltages observed in biological neurons and are arbitrary 
values since all other values within the system are scaled 
accordingly. The internal value is represented by a floating-point 
number. This is somewhat counter to the biological observation that 
the internal value cannot represent very many different values 
(covered in the “Differences” subsection later).  

It is easy to see that a synapse with a weight of 1.0 is sufficient to 
cause the target neuron to spike (in the absence of any other input). 
To illustrate that the threshold is arbitrary, if the threshold were 
defined as 2.0, then a synapse of weight 2.0 would be required to 
cause a spike but everything else would work in exactly the same 
way. Synapse weights are, likewise, floating-point numbers. Again, 
experimentation with biological synapses shows they are limited to 
as few as 100 discrete values. Because today’s computer has been 
optimized for floating-point calculation, the performance cost of 
using floating-point numbers is nominal. On the other hand, the 
memory cost is significant. A single byte would be all that’s required 
to represent a realistic charge value or synapse weight, while the 
floating-point number requires four times the memory.  
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A synaptic weight of less than zero is inhibitory. Because synapse 
weights in the Brain Simulator are floating-point numbers, the 
weight can glide freely from excitatory to inhibitory and back again. 
In biology, this is more difficult because such a synaptic sign change 
requires the use of different neurotransmitters and neuroreceptors 
involving different ionic charges. 

Considering just a single input, you can see that for an incoming 
synapse weight of 1, the output spiking frequency will match the 
input. Every time the stimulating neuron spikes, the synapse 
contributes enough charge to cause an outgoing spike. 

 If the weight is between 0.5 and 1, then it will take two incoming 
spikes to create an output spike. For example, with a weight of 0.8, 
the first incoming spike will increase the internal charge to 0.8 and 
the second will cause the internal charge to increase to 1.6 which 
exceeds the 1.0 threshold, will cause a spike, and will reset the 
internal charge to 0. With a weight between .33 and .5 it will take 
three incoming spikes to cause an output spike…and so on.  

The neuron is acting as a frequency divider. This illustrates an 
important limitation of neurons (both biological and simulated). 
Since there are no partial spikes, a neuron always requires an 
integral number of spikes to reach its threshold (or exceed it). This 
makes it impossible to process a repetitive signal from a single 
neuron by considering its frequency as a floating-point number. The 
most precise frequency processing is to divide the incoming 
frequency by two—and not many stages of such division will result 
in a signal which is too slow to be useful for thinking. There are ways 
to circumvent this limitation with the use of multiple neurons as is 
demonstrated in the “Basic Neurons” network. 

Adding Leakage 

The idealized neuron of the IF model will store its internal charge 
value indefinitely. In the real world, charge leaks away at some rate, 
and in neurons, leakage can be significant. This leads to an extension 
to the model, Leaky Integrated and Fire (LIF).  
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With the LIF model, incoming spikes still contribute to the internal charge of a 
neuron but between incoming spikes, the charge “leaks” or decays away a little. 
If the incoming spikes stop, the internal charge will gradually return to 0.0.  

In the model, the leakage rate defines the fraction of charge which 
is subtracted in each cycle. In the Brain Simulator, you can set the 
leakage rate for individual neurons. If you set the leakage rate to 0, 
then the LIF neuron acts as an IF neuron because there will be no 
leakage. If you set the leakage rate to 1, then no charge is maintained 
from one cycle to the next.  

 
The leakage rate can be used as a “high-pass” filter in that if the incoming spike 
frequency is high enough, O will spike periodically (left) but if it is lowered, O will 
never spike (right). 

In between, there is an interesting and useful circuit. You can see 
that if the rate of incoming spikes combined with their synapse 
weights exceeds the leak rate, the neuron charge will increase and 
the neuron will eventually spike. If the incoming spike rate is less 
than the leak rate, charge will be draining off as fast or faster than it 
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arrives and the neuron will never fire. This means that any neuron 
using this model can act as a frequency-threshold detector. It will 
only fire if the incoming frequency exceeds some given value 
(dependent on the leak rate). Further, with the added frequency-
division described above, once the neuron begins spiking, its output 
frequency will be proportional to the input frequency. 

If the incoming spikes are connected by a synapse of weight 1, the 
neuron will fire on every incoming spike, regardless of the leakage 
rate and so it is no different from an IF neuron. If the incoming spike 
is connected by a weight of 0.75, then the neuron will fire after two 
spikes but ONLY if the second spike arrives soon enough that 
leakage has not drawn the internal charge below 0.25. Above this 
rate, the neuron will fire on every other incoming spike.  

Randomness and Noise 

The models presented so far create ordered, predictable results. 
When we probe the brain and look at neural signals, there appears 
to be disorder and randomness. To consider a conceptually simple 
signal coming to the brain, think in terms of a signal coming in from 
a single retinal cell that spikes faster with brighter light. Ideally, the 
frequency of spiking would track nicely with brightness at a 
particular point. Observation, though, shows a lot of “jitter” and only 
the average spiking frequency over a longer period tracks well with 
the intended signal. Whether this variability is noise or is additional 
signal encoding is not known. There is an ongoing discussion about 
whether this randomness is extraneous or essential to the thinking 
process. 

 
The spiking frequency of a biological neuron shows a considerable amount of 
variability. This is most likely due to electronic or chemical “noise” and doesn’t 
represent the signal. 

Random Neurons 
As the random character of neurons is not precisely known, the 

Brain Simulator has made a first step by incorporating a “Random” 
neuron model. Neurons with this model act as IF neurons except that 
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in the absence of any stimulation, the neuron will fire at a random 
interval with a given mean and standard deviation. The overall 
frequency of random firing is governed by the mean. If the standard 
deviation is set to 0, the neuron will fire at a constant rate given by 
the mean. If the standard deviation is negative, the neuron will be 
disabled. The Random neuron model is used internally to represent 
always-firing neurons. A random neuron with a long mean will act 
generally like an IF neuron except that it will occasionally emit a 
random spike. 

 
The spiking pattern of a random neuron with a mean of 5 and a standard 
deviation of 2. Setting the standard deviation to 0 will cause the neuron to fire 
at a constant rate. 

The Burst Neuron 

Some biological neurons appear to fire bursts rather than individual 
spikes. Within the Brain Simulator, the “Burst” model performs a 
similar function. There are two parameters, one of which governs 
the number of spikes in the burst and the other the rate of spikes (in 
cycles). In other respects, the Burst neuron model acts as an IF 
neuron. 
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This timing diagram illustrates the burst neuron, O, driven by IF neuron A with a 
synapse weight of 0.5. It takes two incoming spikes from A to cause O to fire a 
burst. The number of spikes in the burst is set to 5 and the rate is set to 1 so the 
burst fires at the maximum neuron firing rate. 

The Always Firing Neuron Model 

For convenience, this neuron model fires at a consistent rate every 
n Neuron Engine cycles. The “Always” neuron model can be useful 
for some digital circuit prototypes where continuous firing is 
needed. In practice, it is the same as the Random model with a 
standard deviation of zero.  

The Hebbian Synapse 

Thus far, the models have relied on synapses that have fixed weights 
but there is ample evidence for synaptic plasticity. This opens the 
door to the memory mechanism where information is stored in the 
weights of synapses (described below). 

This learning process was initially described by D. O. Hebb and is 
also called Spike-timing-dependent plasticity. In general, if one 
neuron has a synapse that targets another and it fires immediately 
prior to the target neuron firing, we could assume that the first 
neuron caused the firing of the second (or should have if it didn’t). 
Therefore, the synapse weight should be increased; otherwise, the 
weight should be decreased.  

This is more generally called spike-timing-dependent plasticity 
but I’ll continue to call it “Hebbian”. Based on the interspike timing,  
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Within the Brain Simulator, only certain synapses are designated 
as Hebbian. One can see that if the “control” synapses from A and B 
were also Hebbian, things would be more complex. So, the structure 
of a circuit has fixed-weight synapses and only “content” synapses 
are plastic. For testing purposes, one can select an area of a network 
and reset all the Hebbian synapses within that area without affecting 
the fixed-weight synapses. This can be convenient for resetting 
memory.  

 
With a Hebbian synapse connecting “Clock” to “Out,” spiking on B inhibits Out 
and causes the synapse to weaken. Spiking on A stimulates Out and causes the 
synapse to strengthen. The approximate weight of the Hebbian synapse can be 
inferred from the spiking rate of Out. 

In the same way that the action of a neuron within the Brain 
Simulator is governed by the “Model”, synapses, too, have a model 
which selects their action. One specific model, “Fixed,” does not 
allow for any plasticity and this is the default model for synapses. 
Therefore, only certain synapses are designated as Hebbian. One can 
see that if the “control” synapses from A and B were also Hebbian, 
things would be more complex. So, the structure of a circuit typically 
has fixed-weight synapses and only “content” synapses are plastic. 
For testing purposes, one can select an area of a network and reset 
all the Hebbian synapses within that area without affecting the fixed-
weight synapses. This can be convenient for resetting memory.  

A precise formula for the amount of increase or decrease of 
biological synapse weights is not known and within the Brain 
Simulator is controlled by a lookup table which is subject to change. 
The selection of the model simply selects the lookup table to use. As 
of this writing, there are three weight control tables. 
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• Binary: simultaneous firing causes the synapse weight to 
be set to 1. Firing the target without the source sets the 
weight to 0. 

• Hebbian1: Weights range from 0 to 1 such that all single 
synapses are stable (see below). 

• Hebbian2: Weights range from -1 to 1. Weights are varied 
so pattern recognition is learned with an arbitrary 
number of input spikes. 

• Additional models are anticipated. 

The weights in the Hebbian1 model are set so that fractional-
value weights of individual synapses will be relatively stable. That 
is, a Hebbian Synapse with a weight of 0.25, for example, will remain 
near its current weight. Since the 0.25 synapse will cause the target 
to spike on only every 4th cycle, the weight increase on firing must 
be four times the weight decrease when not firing for the synapse 
weight to remain stable over time. This leads, overall, to synapse 
weights which can increase faster than they can decrease. Note in 
the illustration that the synapse weight is reduced with 8 spikes but 
restored with only 5.  

While the ratios of weight increases to decreases are dictated by 
the desire for stable synapse weights, the absolute values are 
dictated by the desire for weights to change as quickly as possible to 
facilitate rapid learning. As currently implemented, a 0.0-weight 
synapse can be brought to a weight of 1.0 with 11 spikes but 
returning it to zero requires 33. Using a 4 ms neuron cycle time, this 
means that it takes up to 44 ms to set a 0.0-weight synapse to an 
arbitrary value. While this timing is plausible, note that it restricts 
the synapse weight to only 11 discrete values. Increasing the 
number of possible synapse weight values would require smaller 
weight changes for each spike. This can be done by changing entries 
in the lookup table but would result in correspondingly slower 
learning rates. 

Note also that even when attempting to set a synapse weight to 
some precise value, there is no practical way, within the network, to 
learn what the precise value is. A synapse weight of 0.5 will cause a 
target neuron to spike on every other cycle—but so will a weight of 
0.75 or 0.9. So you may observe that a neuron is firing every other 
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cycle but this only gives a general indication of the aggregate 
incoming synapse weight, never precise values. 

Synapse weights do offer higher precision the smaller they are, 
but, once again, this leads to a corresponding reduction in speed or 
increase in complexity as it takes progressively more incoming 
spikes to stimulate a neuron to fire. 

The limitation on setting precise synapse weights and 
subsequently determining what they are will be revisited in Chapter 
3 (“AI is Like Your Brain: DEBUNKED”). 

Adding Timing (Refractory & Propagation Delays) 

Thus far, the demonstrations have presumed that the Neuron Engine 
cycle time is equal to the neuron’s refractory period. That is, that a 
neuron can fire once for every Neuron Engine cycle. This 
simplification works for a large number of circuits but in some areas 
of the brain, more timing is important.  

Consider again that you have an incoming signal, such as from a 
retinal cell, which spikes at different rates proportional to the 
brightness at a particular point. The maximum firing rate of the 
neuron is 250 Hz so if we were to be able to register an image in a 
50 ms timeframe (not an unreasonable assumption), there would be 
a maximum of 12 spikes in that timeframe. One could imagine that 
the one-pixel brightness signal varies with time and that the number 
of spikes over the past 50 ms represents the brightness at any given 
time. Also, it’s not unreasonable that a brightness signal is limited to 
fewer than 12 different levels as we know that it’s difficult to detect 
more than 12 levels of gray (see Will Computers Revolt? Chapter 9). 
I’ve already alluded to a neural circuit that balances neuron leakage 
rate with incoming spike rate to filter the incoming spike rate. But 
with a 4 ms Neuron Engine cycle time, it isn’t possible to represent 
a neuron spiking every 5 ms or 6 ms, for example.  

Refractory periods   

It turns out that the only thing which relates the Neuron Engine 
cycle time to real-world neuron spike times is the refractory period. 
We’ve assumed that a neuron can spike in every cycle, therefore, the 
cycle time must be 4 ms. By setting a different refractory period, we 
can define the cycle time to be as precise as we like. If we set the 
refractory period to be 4 Neuron Engine cycles, then a neuron can 
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fire once every 4th cycle, so the engine cycle time must be 1 ms. If we 
say that the refractory period is 40, then the neuron can only spike 
every 40th cycle so the cycle time is 0.1 ms.  

 
Neuron B spikes one Neuron Engine cycle after A. With a refractory period of 4 
cycles, we can see that B fires during the refractory period of A…only 1 ms later.  

Since the lion’s share of computing power in the Neuron Engine 
is used only when neurons spike, changing the cycle time does not 
dramatically increase the amount of CPU time required. Increasing 
the refractory period can change the number of cycles between 
spikes but does not significantly alter the number of spikes that must 
be processed. 

Note that the leakage rate of LIF neurons is in the amount of 
leakage per engine cycle so as the refractory period is reduced, all 
leakage rates must be correspondingly reduced as well. 

Axon Delays 

A target neuron spikes in the engine cycle immediately after its 
threshold is reached and this is not unreasonable for a 1 ms cycle 
time. For a 0.1 ms cycle time, however, things will be too fast to be 
biologically plausible. The key thing to understand is that, from a 
simulation perspective, the time that a spike is initiated at the cell 
body is not nearly as important as the time that the spike arrives at 
the target synapses. 

Since neurons in the brain can connect to others a considerable 
distance away, and the neural spike travels along the axon so slowly, 
the pulse might arrive at the target synapses anywhere from 1 ms to 
tens of milliseconds later. This is ignored in the models presented so 
far but is significant for certain networks like determining the 
direction of incoming sound, and may be important in other future 
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development. To compensate, the LIF neuron model carries a 
parameter of “Axon Delay” which determines the number of cycles 
that it takes for a spike to reach the target synapses.  

Whereas the refractory delay is the same for all neurons, the 
Axon Delay must be set specifically for individual neurons as they 
may have different physical axon lengths.  

So if the refractory period is set to 40, implying that the engine 
cycle is 0.1 ms, it would be reasonable to set the Axon Delay to 20 
(for example) so that neural spikes would arrive at target neurons 2 
ms after the threshold is reached. 

With appropriate settings of the Refractory Period, Axon Delay, 
and Leakage Rate, a reasonably accurate representation of precise 
neural timing can be achieved. 

Short-Cut Models 

There are inconveniences in using neural spikes to represent 
information and computers are adept at many things that are 
difficult to implement in spikes. Three examples are given here: 

Color Neurons  

The eye receives light and emits spikes down the optic nerve 
corresponding to (among other things) the color detected at any 
point in the visual field. The eye has separate sensors to detect 
different colors (red, green, blue, and gray intensity) and signals 
from these neurons seem to remain separate through the optic 
nerve. The computer stores the RGB (or aRGB) triples in single 
memory words and decodes them as needed—a process that is not 
biologically plausible. For convenience, there is a “Color” neuron 
model. It does not spike but simply stores an integer value that could 
represent a color. As an added convenience, the color of the neuron 
display in the user interface is governed by the RGB value, so if you 
have an array of Color neurons, you can see the color image in the 
user interface. Also, the internal value is displayed or modified in 
hexadecimal as the “Charge” of any Color neuron. 

The content of a Color neuron is only useful to Modules because 
it generates no spikes. To extract a color from the Color neuron, you 
need a few lines of code which will mask off the portion of the color 
signal which is of interest. These components of color can then be 
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handled by more biologically plausible neurons. The conversion 
from a single Color neuron to the spiking rates of four IF neurons 
(representing red, green blue, and gray intensity) is demonstrated 
by the code in the ModuleColorComponent Module. 

FloatValue Neurons 

Like Color, there are times that a high-precision floating-point 
number is useful. Biological neurons have a limited range of 
possible, discernible values, because high noise levels (and leakage) 
limit the number of discrete values a neuron might represent. Also, 
representing a signal in a neuron’s spiking rate is limited by the 
speed at which a signal must be represented. Like the Color neuron, 
neurons with the FloatValue model do not spike and must be 
accessed via a software module. 

Neuron Labels  

Every neuron may carry a text label, and these are typically used 
just to display in the user interface in order to keep track of which 
function is being handled where. In the demonstration networks, 
some neuron labels are used to indicate the function of a neuron or 
to refer to it while others are used simply as notation labels within 
the network. 

There is no limitation, however, in the way a Module can 
manipulate the label so it could also be used to store a text string 
which can be used by other software in a Module. As an example, 
neurons in speech-recognition are given labels that correspond to 
the words or phonemes they represent. Also, a Module may 
reference any neuron in the network by its label as well as by its Id 
to, say, add a synapse or read or set a value. 

Since neurons are sometimes referenced by Id and may also be 
referenced by label, numeric labels (which might be ambiguous) are 
automatically prepended with an underscore (“_”) which does not 
show in the neuron display. Labels don’t need to be unique but this 
can cause issues when subsequently referencing neurons by label so 
there is a warning when setting a neuron label if it is already in use. 

Differences between Brain Simulator and biological neurons  

For the most part, anything which can be done in Brain Simulator 
neurons is plausible in biological neurons. As mentioned previously, 
biological neurons represent a complex soup of chemicals and it is 
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difficult to distinguish between the components of neural activity 
that are essential to intelligence and those which are artifacts of 
their biological nature.  

This section describes some of the many differences between the 
Brain Simulator and its biological counterpart. 

Use of Floating-point Numbers 

Within the Brain Simulator, neuron internal values and synapse 
weights are processed as floating-point numbers. Because of 
decades of CPU performance optimization, today’s CPUs handle 
floating-point numbers nearly as fast as integers, and if one wished 
to be more biologically accurate and were to implement a system 
limiting things to 256 discrete values (for example), the memory 
requirement would go down by a factor of 4 but processing time 
might not improve. 

The use of floating-point numbers allows for minute differences 
in various values to impact the result. For example, small differences 
in synapse weights can be used to encode information while this is 
not possible in biological neurons. 

Noise 

Brain Simulator neurons can be noise-free and synchronized. 
Unless noise is deliberately introduced with Random neurons, the 
operation of a network will be absolutely consistent and repeatable. 

Reliability 

For all practical purposes, neurons in the Brain Simulator are 
completely reliable whereas neurons in the brain are not. Most of 
the networks in the Brain Simulator depend on this reliability and 
the failure of any single neuron or synapse might cause the network 
to fail. To make a Brain Simulator Network more resilient to neuron 
failure would require significant design additional effort and many 
additional neurons and synapses.  

High synapse weights and multi-synapse Equivalence 

Most networks rely on synapse weights which are significant 
relative to the threshold, so a small number of incoming spikes can 
cause the target neuron to spike. While we can assume that 
individual biological synapses have a much smaller maximum 
weight, a single high-weight synapse is functionally equivalent to a 
number of smaller-weight synapses in parallel.  
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The Brain Simulator only allows a single synapse between any 
two neurons and we simply presume that this represents the 
aggregate weight of a larger number of parallel synapses. As a 
consequence, the number of synapses required to implement any 
specific function is much smaller than the number of synapses 
observed in biological neurons. 

Creating New Synapses 

In the brain, synapse weights can be changed in milliseconds. On 
the other hand, creating new synapses is very slow—observed over 
periods of hours or days. In the Brain Simulator, creating a new 
synapse is only slightly slower than changing the weight of an 
existing synapse. Although new synapses can only be added rapidly 
by Modules, this eliminates the need for huge numbers of synapses 
with near-zero weights which are in place in the brain as 
placeholders waiting for their weights to be increased so they can be 
significant. 

Once again, the number of synapses required for a learning 
function in the Brain Simulator is much smaller than the number of 
synapses observed in biological neurons. 

Sign Transitions of Synapses 

In the Brain Simulator, since synapse weights are represented by 
floating-point numbers, the only difference between an excitatory 
synapse and an inhibitory synapse is the sign of the weight. In 
biology, different synapse types must use different 
neurotransmitters with different ionic charges. As such, the 
biological equivalent of the Brain Simulator’s smooth glide from 
excitation to inhibition must involve setting the biological excitatory 
synapse weight to 0, then increasing the inhibitory synapse weight. 
This means that in a general learning environment, there must be 
two biological synapses to be equivalent to one Brain Simulator 
synapse. 

Once again, the number of synapses required for a learning 
function in the Brain Simulator is smaller than the number of 
synapses observed in biological neurons by a factor of two. 

Synchronization 

In the brain, all neurons can work asynchronously but in a 
computer, things are necessarily more sequential so 
synchronization is necessary. Imagine that two neurons fire at the 
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same time and both connect to the same target neuron, one with a 
weight of +1 and the other with a weight of -1. In your brain, the 
target will never fire. In a simulator, if the +1 synapse is processed 
first, the target neuron will fire but if the -1 is processed first, it will 
not.  

To eliminate this problem, the Neuron Engine algorithm imposes 
a discrete time step and two-phase processing. Within a time step, 
every neuron has the chance to fire just once, then every firing 
neuron processes its target synapses. By setting a long refractory 
period (a short cycle time), the impact of synchronization can be 
minimized but most of the Brain Simulator networks are built with 
a Refractory Period of 0. This is sufficient to represent a huge 
number of network capabilities but it does impose some timing 
limitations.  

Performance 

A considerable amount of code is required to make the neuron 
array work properly in a parallel environment on a multi-core 
system or across multiple computers in a networked system. 
Additional code was needed to make the system FAST. The actual 
speed measurements are included in Chapter 11 on performance. 

As a point of comparison, the 450-neuron BasicNeurons network, 
which is set with a refractory period of 0, can process engine cycles 
in 0.04 ms—100 times faster than biological time. In general, the 
processing requirement goes up with the number of neurons that 
are firing. As neocortex neurons fire, on average, once every six 
seconds, simulation of the entire neocortex on an array of today’s 
high-performance servers should be possible.  

The Array Structure 

Within the Brain Simulator, each neuron has an ID which is its 
index in the neuron array so it is a simple matter to indicate any 
specific neuron. In the brain, no such addressing scheme exists. In 
the simulator, you can add a synapse between neuron ID=1234 and 
neuron ID=5678. But in the brain, you can only add a synapse based 
on some function of physical proximity or some function of current 
firing state. 

This means that your brain might create hundreds or thousands 
of synapses and then winnow these down to those which turn out to 
be significant. 
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Video Links 

“How Your Brain Works: Part 2 Neurons” 
http://futureai.guru/videos?id=107 
 
“Introducing the Brain Simulator II” 
http://futureai.guru/videos?id=112 
 
 

http://futureai.guru/videos?id=107
http://futureai.guru/videos?id=112
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Chapter 3: 
AI is NOT Like Your Brain 

Sometimes at the beginning of a movie, you see something like: 
“Inspired by true events” or “Based on a true story”. Saying that 
“Artificial intelligence is like your brain” is a lot like that. It starts 
with a few facts, then the rest of the movie goes off in a different 
direction.  

 
Your brain is so different from AI’s Artificial Neural Networks 

(ANNs)  that in this chapter I’ll focus on just three areas: 
• ANN neurons aren’t like biological neurons.  
• Artificial synapses are only a little like biological synapses 
• Backpropagation, the mainstay of AI learning, has no 

biological analog whatsoever.  

Of course, there is another branch of AI, Symbolic AI, but it makes 
no pretense of being like your brain so we’ll bypass it for this 
conversation. 

The reason this is an important topic is that in the search for 
Artificial General Intelligence, today’s crop of AI applications show 
very little aptitude in areas where any three-year-old can excel, 
things like: common-sense understanding, cause and effect, the 
passage of time, or gravity or spatial relationships. 

We have an excellent example of general intelligence in the 
human brain. So, Like the Wright Brothers who analyzed birds when 
designing the first airplane, let’s compare the human brain’s 
similarities and differences with today’s ANNs.  

Neural networks are so different from the way your brain works, 
let’s start with the lone similarity…the general concept. Both have 
things called “neurons” interconnected by weighted “synapses” and 
the state of a neuron impacts the states of neurons to which it is 
connected.  
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But there, the similarity stops. Biological neurons don’t appear in 
orderly layers with orderly connections between one layer and the 
next like in Neural Network diagrams. Instead, your brain has a 
tangle of interconnections that we have yet to unravel. 

 
Your brain is a tangle of connections like the artistic rendering on the left while 
Artificial Neural Networks portray an orderly, layered connection structure. 

Neurons 

Computer models of biological neurons can be complex but 
fortunately, the simplest neuron model, Integrate and Fire, is 
sufficient to show the limited relationship with the ANN.  

As described in the previous chapter, the biological neuron 
accumulates charge from incoming synapses and emits a spike when 
a threshold is reached.  

Let’s turn to Artificial Neural Networks. If you’re at all familiar 
with them, you’ve seen the weighted-sum formula numerous times. 
It’s a useful formula but it doesn’t match the IF neuron model—and 
more sophisticated models diverge even further. 
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The classic Artificial Neural Network neuron algorithm takes all inputs, 
multiplies by weights, sums them, and then uses an activation function to create 
the output value. 

Here’s the initial problem. The biological neuron is a spiking 
device that cannot and does not output an analog value like the x’s 
and the output value in the illustration. Instead, neuron values are 
binary—either there is a spike or there is not. In a few cases, AI 
experts counter by saying: “No problem, just set the activation to a 
step function so the output will be 1 or 0.” But this ignores the 
accumulated charge from one cycle to the next, so we’d also need to 
add internal memory—not reflected in the neural network model. 
With enough correction, the formula can morph into the biologically 
plausible one used in the Brain Simulator—but by then, any 
relationship with Artificial Neural Networks is lost. 

 
This is a timing diagram of IF-modeled neurons, the upper having a synapse 
connected to the lower. Each spike of the upper neuron contributes to the 
charge of the lower neuron until the threshold is reached. Then the lower neuron 
emits a spike of its own and the process can repeat.  
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OK, so many AI experts try to rectify things by saying that the x’s 
don’t represent individual spikes but represent the spiking rate of 
the neuron—the idea is that the rate could vary continuously. In 
practice, though, the spiking rate cannot vary continuously because 
the neurons have a maximum spiking rate of about 250 Hz and 
neural signals cannot be useful below about 20 Hz. In between, high 
noise levels in the brain limit the number of different rates that can 
be reliably represented. But I won’t dwell on these practical 
problems and instead move on to an even more fundamental issue. 

 
In the real world, biological neuron firing rates can’t represent very many 
different values because they have minimum and maximum useful rates and the 
noise levels in the brain are high, limiting the number of different rates that can 
represent a value reliably. 

When you consider how changing an incoming synapse weight 
affects the spiking rate, you see that the biological spiking neuron 
simply doesn’t match the ANN formula. This is because these pesky 
biological neurons are SIMPLY NOT LINEAR DEVICES. 
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With an input spiking at a constant rate (1.0) while we vary the incoming 
synapse weight, you can see that the neuron’s spiking rate doesn’t match the 
ANN formula. With a weight of 0.9, the formula defines a rate of 0.9 while we 
observe a rate of 0.5. 

For a somewhat more complex example, consider that biological 
neurons can be affected by the timing of the incoming signals 
received. This example is easily replicated within the Brain 
Simulator and shows that two signals, both at a rate of 0.5, can result 
in different spiking rates dependent on the phase of the two signals. 

 
This Network illustrates another shortcoming of the ANN formula. Both the 
input signals, A and B, are firing at the same rate of 0.5. But the output rate can 
be 0.25 or 0.33 depending on whether A and B are firing at the same time or 
alternately.  

When we look at the formula, signal phase and timing are 
missing. Yet in the real world of neurons, phase and timing are 
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important and can lead to different results. This gives the biological 
neuron a whole universe of potential functionality excluded from 
the ANN formula. 

And I haven’t started into that sigmoid activation function to the 
right of the summation in the classic ANN algorithm a few pages 
back. It has no biological analog at all; it was added on there in the 
1980s to make the backpropagation algorithm work to solve some 
specific problems…I’ll return to backpropagation in a moment. 

This is not to say that the ANN formula is a bad formula. It just 
doesn’t have much to do with biological neurons. Why? The 
underlying idea of having neurons with analog, continuous values is 
invalid, and excluding phase and timing eliminates lots of the 
neuron’s potential. 

Synapses 

Which brings us to synapses for a similar conversation. Once again, 
the neural network represents the weight of a synapse as a floating-
point number, although the neuroscientists tell us that they have a 
limited number of discrete values. In the previous chapter, I 
explained how the more values a synapse might take on, the slower 
the learning process must be. 

But let’s look at an even more fundamental problem. THERE IS 
NO WAY TO ACCESS THE WEIGHT OF A SYNAPSE PRECISELY.  

Reconsider the example of a neuron firing at a fixed rate 
connected to another with a synapse of unknown weight. You 
observe that the output neuron is firing at half the rate of the input. 
But that doesn’t mean the synapse has a weight of 0.5, it means the 
synapse weight is somewhere in the range of 0.5 on up to 1.0. How 
can you tell what the exact value is? 

Within the Brain Simulator, you can just click on the synapse and 
read out its weight or click on the Out neuron and see how much the 
synapse contributes to the membrane potential. But in a biological 
brain, we don’t know how to measure the weight of a synapse and 
the only way to measure a neuron’s membrane potential is with 
needle electrodes, which is not a very pleasant prospect. 

You could imagine a scheme where you fired an input neuron 
repeatedly until the output neuron fired and count the number of 
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spikes it took. No consider that if you want to detect a synapse with 
a weight of 0.01, it will take 100 spikes to get the output to fire. At a 
firing rate of 250 Hz, this will take nearly half a second; and that was 
to determine the weight of a single synapse—obviously to slow. If 
you want to represent a hundred synapse values which is not much 
precision at all, it will take even more time. So detecting a synapse 
weight with any degree of precision is impossible, how about setting 
the weight? 

We’ve all heard that “Neurons which fire together, wire together,” 
which means that connected neurons with near-simultaneous 
spiking increase a synapse weight while the converse is true.  

 
With B connected with a synapse of weight -1.0 and A connected with a weight 
of +1.0, you can see how stimulating or suppressing simultaneous spiking will 
change the weight of the synapse. You also get the idea that setting a synapse 
to any specific weight is not possible and you can never know, precisely, what 
the synapse weight is. 

With sufficient stimulation, you can be pretty sure that the 
synapse weight will near 1, and with sufficient suppression, it will 
approach zero (or -1 or whatever limit values are in the Hebbian 
formula). In between, though, synapse weights are imprecise. There 
is no way to set a synapse weight to any specific value like .5 and 
greater precision is even further out of reach. Finally, there is no 
practical way for a neuron to discover the precise weight of a 
synapse. 
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Worse yet, every time the neurons spike, the synapse weight 
changes slightly. That means that even if you could set the synapse 
weight precisely, it won’t stay at that weight for very long. 

So, if you can’t store or read back synapse weights, what good are 
they? Well, synapse weights are not useless, far from it. They’re just 
useless for storing precise values you want to read back. A better 
way to approach it is that a synapse represents a single bit of 
information while the weight value represents the confidence that 
that bit is true—that is, how easily it can be changed. 

Once again, looking at the fundamental neural network formula, 
notice how it relies on the idea of precise synapse weights. 

Backpropagation 

Which brings us to backpropagation. It represents a family of 
algorithms that need to be tweaked, trained, and tweaked again. 
Everyone can give examples of the shortcomings of backpropagation 
like this one where facial recognition improves if parts of the face 
are rearranged—but is lost if the image is inverted. Further, you 
know your brain doesn’t need thousands of training samples. You 
can learn a new symbol or a new face in just a few moments…and 
you’re not confused at all if it’s upside-down. 
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In this example of sub-optimal deep learning, recognition accuracy actually 
improves when various parts of the face are grotesquely rearranged but is lost 
altogether if the correct image is upside down. 

But that’s not my point. Backpropagation cannot possibly be 
representative of how neurons learn…for two fundamental reasons.  

First, a quick look at the formula shows that it relies on knowing 
what current synapse weights are and being able to directly modify 
the weight of any synapse in the network with great precision. This 
is simply not possible in a biologically plausible world. 

 
This excerpt from the backpropagation equations illustrates how 
backpropagation is completely reliant on being able to accurately read and 
modify any synapse weight in a system. 

Second, the method by which the weight changes are calculated, 
called “Gradient Descent,” will not work if the gradient field is not 
continuously differentiable…that is if it isn’t smooth—which it won’t 
be because of the discrete nature of the neurons and synapse 
weights in your brain. 

Summary 

So biological neurons, synapses, and learning aren’t like the ANN 
and I’ve just scratched the surface. That isn’t to say that today’s AI 
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approaches are wrong or don’t work. On the contrary, many AI 
systems work very well. It does mean that the algorithms of today’s 
AI are different from the way your brain accomplishes similar tasks 
because classic ANN algorithms are impossible to implement in 
neurons. After forty years of experimentation in AI with no 
emergence of general intelligence, it’s time for some new 
approaches.   

The examples in The Brain Simulator II illustrate some of the 
capabilities and limitations of biological neurons and can be used to 
highlight the distinction between ANNs and real-world intelligence. 

Could the Brain Simulator support the classic ANN algorithms? Of 
course. As mentioned in the previous chapters, neuron values and 
synapse weights are stored internally in floating-point numbers and 
a Module can be written to have direct access to read and modify any 
synapse weight in the network. Thus, we could add a neuron model 
to include the weighted-sum algorithm of ANNs and we could add a 
Module that implements backpropagation. 

Would this be a good idea? Keep in mind that the point of the 
Brain Simulator is to try out new algorithms and experiment with 
different approaches. The internal structures are designed around 
the biological neuron which is fundamentally different from the ANN 
neuron. The biological neuron has internal charge memory, leakage, 
and timing capabilities while the biological axon can connect 
synapses to neurons almost anywhere in the brain. For efficiency, 
the Brain Simulator only needs to process neurons when they spike. 
This is fundamentally different from the ANN, which processes vast 
arrays of neurons and synapses whether they are active or not. So 
on the whole, implementing classic ANNs on the Brain Simulator is 
possible, but not computationally efficient and would likely show 
that the ANNs work just like the ones on other platforms.  

Video Links 

“AI is Like Your Brain: DEBUNKED” 
http://futureai.guru/videos?id=133 

http://futureai.guru/videos?id=133
http://futureai.guru/videos?id=133
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Chapter 4: 
Applications of Neurons 

This chapter asks you to consider a few things the brain can do 
within the context of what we know individual neurons can do. 
Looking at the greatest things the brain can do can cloud the picture. 
If you understand the workings of the neuron (or a transistor), it’s 
not at all obvious that you can harness many of them to play chess, 
for example. So let’s start with some of the simple things the brain 
can do. 

Obviously, neurons can differentiate between different colors or 
intensities of light. How? It’s not as simple as you might think—
actually building a network in the Brain Simulator to accomplish 
even this simple task can be an eye-opening exercise.  

We know you can remember things—lots of things for a short 
time and different things for a longer time. This chapter describes 
several ways this might happen in neurons.  

You can determine the direction of sounds with considerable 
accuracy. How can neurons do that? The speed of sound requires 
measuring differences of microseconds in sound waves with 
neurons which take several milliseconds to spike. 

The answers to these and many similar questions provide insight 
into how the brain works and how it could implement general 
intelligence. 

Digital Logic in Neurons 

It’s worth considering a special case where neuron values and 
synapse weights are restricted to represent digital circuits, to either 
1 or 0. With a synapse weight of 1, any individual neuron will cause 
its synapse target neurons to spike and, conversely, a neuron will 
fire if any incoming spike is received. If you consider a neuron with 
multiple incoming synapses, it acts as an OR gate…it will spike if any 
incoming signal spikes. Likewise, a neuron that is connected to itself 
will spike indefinitely if it ever receives an incoming spike. Here’s 
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where the -1 synapse comes in. Connect an incoming synapse with a 
weight of -1 and it will cause the neuron to stop spiking. 

 
Because it is connected to itself with a synapse of weight 1, whenever Neuron O 
receives a spike from A, it will subsequently spike continuously because it 
stimulates itself to spike. Subsequently, if it receives a spike from B which is 
connected with a synapse of weight -1, it will stop spiking. 

With this simple network, we’ve created a single bit of memory. 
The spiking state of neuron O can represent either a 1 (spiking) or a 
0 (non-spiking). There are other mechanisms that offer some 
advantages over this one which will be discussed later. 

Appropriate selection of synapses can create networks that 
implement any basic logic component.  

 
This timing diagram shows you that basic logic functions can be created with 
simple neurons. As an example, the A OR B neuron spikes when either A or B (or 
both) is spiking. The A AND B neuron only spikes when both are spiking. This type 
of logic requires an “always-spiking” neuron (the neuron below B in the array) 
in order to perform “signal inversion.” 

While this is potentially useful in its own right, a key feature is to 
extend this observation to know that given enough neurons, you 
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could create any digital circuit. This is because the simple set of logic 
gates implemented here are “functionally complete” and can be 
proven to be the building blocks of any logic circuit. 

For example, consider that the 8086 processor (ca. 1978) 
contained only 29,000 transistors (at most 10,000 logic gates) and 
so could be emulated within the Brain Simulator with ample neurons 
left over for other functions. Even this early microprocessor, though, 
would be perhaps a million times slower if implemented in neurons 
because computer designs have been optimized around the 
operating characteristics of transistors while the brain has been 
optimized around the strengths and limitations of neurons. 

The point is to show that even this simple model with synapses 
restricted to one of two values is sufficient to represent any digital 
circuit. All the complexity of the biological neuron may add some 
efficiency but as more complex models are described, recall there is 
no theoretical need for them—you could do everything with the IF 
model and fixed-weight synapses. 

Saving Energy 

As an alternative, with the slightly more complex LIF model, 
identical logic functions can be implemented with a different 
scheme. Instead of continuous firing representing a logic 1, let any 
single spike represent a 1. This is a bit more difficult to grasp but is 
much more biologically plausible. 

 
Where the previous demonstration used “always-firing” to represent a logical 
“1,” this uses just a single spike. The logic levels are only valid after the “Read” 
neuron spikes. When compared with the previous Network, this represents the 
same logic but the multiple spikes are not there. The great advantage is that this 
Network requires almost no energy when logic is inactive. 

We know that the brain is tremendously efficient. My brain uses 
only 1/10th the energy of the CPU in my desktop computer. One of 
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the ways it does this is by not having any neuron spike unnecessarily 
because spiking requires energy. While this logic family is just a bit 
trickier, it forms an equally functionally complete set.  

It’s difficult to know if your brain uses logic like this. If you were 
probing a brain looking for activity, the always-firing logic would be 
immediately obvious while the single-spike logic would not be. 
Single spikes could be performing a variety of logic functions in the 
brain and we will not be able to determine what they are until we 
develop the technology for tracing individual connections. 

Frequency/Rate Detection 

Sensory signals which arrive at the brain contain information in the 
form of the spiking rate. Whether it is color, sound intensity, touch, 
etc., the stronger the sense, the faster the relevant neuron will be 
spiking. Similarly, the brain’s output to muscles, most of the actions 
your brain can perform, cause muscles to contract more strongly 
with faster spiking. 

Rate-based signals at the inputs and outputs of the brain have led 
many to presume that all the internal processing of the brain is 
likewise rate-based. But when you consider the types of things your 
brain needs to do, though, you can convince yourself that interior 
signals of the brain represent meaning in individual neural spikes or 
clusters of redundant spikes. 

Consider how the brain might answer these questions: What 
color is this point? Are these two adjacent points the same color (is 
there a boundary)? The answer to both of these is that neurons need 
to be able to compare the firing rates of different neurons.  
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This timing diagram, which might represent spikes coming from the retina, 
illustrates the difficulty of identifying different colors. Your brain gets signals like 
these; can you tell which color it represents? This timing is created with a 
Module that can read pixels from a video camera and generate the spiking rates 
for Blu, Grn, Red, and overall intensity neurons. A small amount of randomness 
is introduced to prevent the signals from synchronizing. 

Different neurons representing blue, green, red, and overall 
brightness all spike asynchronously at different rates. Any specific 
color could be identified by detecting specific rates of three neurons 
(Blu, Red, Grn) simultaneously while a boundary might be located 
by detecting different firing rates from two adjacent intensity 
neurons.  

There are two ways to look at any rate-based signal. The first 
would be to count the number of spikes in a given timeframe. The 
other would be to measure the time between any adjacent pair of 
spikes. The former is more immune to noise because it averages over 
a longer timeframe but the latter can generate a result more quickly 
(for faster signals). 

A simple way to detect which of two signals is firing faster is to 
connect them to each of two different neurons with synapses of 
weight 0.5 and -.5. The neuron with the faster-spiking signal will 
accumulate charge faster in one and cause it to spike while 
suppressing the other.  
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A is spiking at rate 10. On the left side of this timing window, B is spiking at a 
rate of 11 so A is faster. Midway through the display, B’s rate is reduced to 9 so 
A is faster.  

On closer inspection, this circuit relies on the fact that a faster-
spiking neuron will, at some point, fire two spikes in a period where 
the other fires none. There are two problems with this simplistic 
approach. First, any noise in the two signals will keep it from 
working properly. Second, and perhaps more important, it’s slow. If 
we assume a cycle time of 1 ms, it takes 100 ms for this circuit to 
determine which signal is faster because spikes come about 10 ms 
apart and it may take 10 spikes to detect the difference in rate. 
Imagine how slow your brain would be if it took a full tenth of a 
second to determine even the simplest difference. So we need a 
more sophisticated solution. It will take more neurons but will be 
much faster. 

The following network can discriminate between eight different 
spike rates but could be extended to an arbitrary number (within 
time and noise constraints). To detect a visible boundary, two of 
these networks would be connected to two adjacent pixel intensity 
signals and the outputs are ANDed so that if the same level is 
detected on both, no boundary exists. The second logic example in 
the previous section could be used because it has the side-effect of 
handling incoming spikes which are not synchronized. 
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A Network like this can detect eight 
different rates of incoming signal. 
Neurons in the center column have 
different leak rates so they act as high-
pass filters with different cut-off 
frequencies. Neurons in the right-
column have synapses that limit firing 
to only one specific frequency at a time. 
In this example, the refractory period is 
4 and the signals detected range from 
5-12 cycles between spikes. This circuit 
registers the rate on every other spike. 

 
 
 
Color detection requires three 

such discriminators. Similarly, 
recognized colors indicate 
neurons which are the AND of 
three specific red, green, and blue 
levels. Only eight levels may be 

needed for each color (yielding 512 recognizably different colors) 
while more levels would be needed for boundary detection. This 
would account for the optical effect that two objects may appear to 
be the same color until they are next to each other so the boundary 
can be detected. Similarly, because the specific location of a 
boundary is important while a color is a property of an area, we can 
expect many more intensity (gray-level) signals than color signals. 

Four Memory Mechanisms 

The question is: given what we know about how neurons work, how 
can they be harnessed to store information? 

In the same way, the computer storage is hierarchical with CPU, 
RAM, and SSDs or disks all contributing with trade-offs of speed, 
cost, energy consumption, and permanence, memory in the brain 
has different needs for different parts of the thinking process. For 
example, your brain needs to store an object’s position for a very 
short time in order to know if it is moving. It doesn’t matter how 
many neurons it takes (cost and energy), but you only need this 
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memory for a fraction of a second. At the other end of the spectrum, 
you have long-term memories (like childhood memories), and these 
need to be essentially permanent but consume no energy to 
maintain the memory.  

I see four ways that neurons can store information and others 
may come to light. I have already touched on one method of using 
neurons to store bits of information by firing continuously, and here 
I add three more. Because of the size and varied structure within the 
brain, it is likely that all of these are used. 

Memory in Spiking State 

Previously, I described how a neuron connected to itself with a 
synapse of weight 1.0 can act as a single bit of memory. It will begin 
to fire if it is stimulated and will fire continuously until it is 
suppressed. This has the advantage of being easy to explain, requires 
one neuron per bit, and is very fast (for a neuron). But we need to 
consider that spiking neurons consume energy. This means that 
storing information in continuous spiking is unlikely to be a 
widespread approach in the brain. 

As initially described, this method oversimplifies the problem 
with a neuron synaptically connected to itself. When such a neuron 
emits a spike, it will likely be received within the neuron’s refractory 
period and be ignored. This can be overcome by increasing the axon 
delay or by having multiple neurons forming a ring of connections 
(as shown). 

 
With a refractory period of 4, a ring of four neurons, each firing the next, stores 
a single bit in the firing state. The ring starts firing on Set and stops on Reset. 
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Memory in Internal Charge State 

Let’s consider storing information in the internal charge state of 
a neuron. For example, a neuron represents a logical 1 if the internal 
charge is 0.1 or greater and a logical 0 otherwise.  

 
In this circuit, when “Read” spikes, the content of the memory will appear on 
Out. After “Set” has spiked, Out will spike after Read. After “Reset” has spiked, 
Out will NOT spike after Read. The two unlabeled neurons in the center 
constitute the memory bit while the other neurons can be common to any 
number of bits. 

This idea requires at least two neurons per bit because the “Read” 
operation is “destructive”. That is, in order to read the internal state 
of a neuron, you must alter its internal state, possibly causing it to 
spike, but then you need to restore the original state back into the 
neuron. This memory has very fast store and retrieval times and 
uses no energy when it is not being read or modified. 

Using an IF model, the storage time is infinite but with a more 
realistic LIF model, the internal charge will decay so the memory 
must be refreshed by reading periodically. Interestingly, computer 
DRAM has exactly the same issue (that the charge state decays with 
leakage) and needs to be refreshed for the same reason. If the 
memory is not refreshed, it will gradually lose its content. On the 
other hand, this may be a useful mechanism for short-term memory 
in the brain. That is, the memory is never reset but only stored and 
read. Simply waiting some amount of time (perhaps a second) is 
sufficient to clear the memory by leakage. 

Memory in Shifters 

Another candidate for short-term or intermediate-term memory 
is the shifter or delay line.  
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Two types of shifter are shown. The upper transfers a spike directly from one 
neuron to the next and so is a fixed time delay. The lower advances the spike by 
one neuron every time the Step neuron fires and so can provide a variable 
amount of delay. 

A delay line can be thought of as a bucket-brigade where the 
incoming signal, “In”, is transferred down a chain of neurons. The 
length of the delay-line limits the amount of memory. Synapses 
could be added at any intermediate step so, for example, you might 
think back in your short-term memory to recall the last word, or the 
last phrase, or more.  

The delay line requires one or two neurons per bit depending on 
whether speed control is needed. As an example, short-term 
memory for incoming audible signals might incorporate the simpler 
mechanism while the process for creating speech might use the 
more complex design so that you can speak at whatever speed you 
like. 

Memory in Synapses 

The classic AI mechanism is storing information in the weights of 
synapses—you could think of a synapse of weight 1 as representing 
a 1 and a synapse of weight 0 representing a 0. This memory 
mechanism offers the advantages of being able to store much more 
data as there can be thousands of synapses for each neuron. Further, 
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this is the only memory mechanism with any degree of permanence. 
If you want data to be stored for days or years, this is the mechanism 
for you because the previous mechanisms either use too much 
energy or decay over time. The disadvantage is that this mechanism 
is much slower to change, requiring many spikes to set the synapse 
weight.  

 
The idea of storing data in a synapse is not as simple as it sounds. The single 
Hebbian synapse from A to B can be set to a weight of 1 or 0 by the Reset and 
Set neurons which each fire bursts of spikes sufficient to fully change the weight. 
Shorter bursts could set the synapse to an intermediate value but making use of 
some intermediate value is more complex. 

You might think the analog nature of a synapse might let you 
store any value in the synapse weight as is the classic idea of ANNs. 
But experimentation with Brain Simulator leads to the conclusion 
that although you might set the weight of a synapse to one of several 
possible values, there is no practical way to read back the weight 
without using multiple additional neurons—nullifying the 
advantage of storing information in synapse weights. 

Axon Delays 

Neurons can be used to handle timing far more accurately than you 
might think. Even though a neuron can only fire once every 4 ms and 
the neural spike is 1 ms long, the neuron (both biological and 
simulated) can differentiate very small timing differences through a 
neat trick.  

For example, when you hear a sound, you can tell which direction 
it came from with reasonable accuracy. One of the important 
directional cues is that the onset of the sound arrives at your two 
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ears at different times depending on the direction. A sound directly 
in front of you will arrive at both ears simultaneously while a sound 
from the side will arrive at the nearer ear first. Different angles will 
yield different delays. 

 
One way you can localize sound is by detecting the difference in the time of 
arrival of sound at your two ears. The chirp from Bird C will be heard at the same 
time in both ears. A chirp from Bird A will be received at your left ear 0.62 ms 
before it arrives at your right ear. The sounds from birds B and D will arrive at 
your ears only 0.40 ms apart.  

With the speed of sound at 343 m/s and the distance between 
your ears at 21.5 cm, the maximum time difference is only 0.6 ms. A 
sound at a 45-degree angle will have a time difference of 0.4 ms. How 
can the slow neurons in your brain detect the difference between 0.6 
ms and 0.4 ms? The answer sheds light on why timing is important 
in neural modeling. We can be sure that timing is important in this 
specific instance, but we don’t know that it plays an important role 
in general intelligence. 



Applications of Neurons   65 
 

 
The neural circuit demonstrates how your brain could localize sound by 
detecting whether your left or right ear receives a sound signal first. In this 
example, L fires only if the left ear receives the signal first and R fires only if the 
right ear receives the signal first. To create accurate localization, sub-
millisecond timing is needed so we would need multiple L and R neurons for 
different angles and the synapses leading to them from the ears need different 
Axon Delays. 

Consider that if a neuron receives a +1 and -1 simultaneously or 
if the -1 arrives first, it will not spike (as in the previous models). If 
the -1 comes later (even by a tiny amount once the spike is being 
emitted), the -1 signal will arrive in the refractory period and will be 
ignored. How can your brain control the arrival times so precisely? 
With varying axon lengths. By having multiple neurons connected to 
both ears with varying axon lengths, your brain can determine the 
angle with great precision. In the same way that the previous rate-
detector had different neurons which responded to different spike 
timings, an array of neurons could fire only for specific sound 
directions. In order to simulate this in the brain simulator, you’d 
need to set the refractory period to 40 or even more so you could 
represent timing with sub-millisecond precision. 

Video Links 

“How Your Brain Works: Part 2 Neurons” 
http://futureai.guru/videos?id=107 
 
“Short: Neurons” 
http://futureai.guru/videos?id=139 
 

http://futureai.guru/videos?id=107
http://futureai.guru/videos?id=139
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“Short: Single-Spike Conversion” 
http://futureai.guru/videos?id=138  
 
“Short: Short-Term Memory with Neurons” 
http://futureai.guru/videos?id=137  

http://futureai.guru/videos?id=138
http://futureai.guru/videos?id=137
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Chapter 5: 
Networks 

The combination of neurons and synapses forms a “network” that 
might perform some interesting or useful function. Every neuron 
and synapse within the network has some specific state depending 
on its model (as described previously) which defines what will 
happen next.  

Networks can be saved to files and restored for future 
computation. At present, the complete state of the network is stored 
in an XML file (a standard document file format) which can be 
examined with any basic text editor like Notepad. When the file is 
reloaded, the processing can continue exactly where it left off when 
the file was saved. 

The network files can be thought of as being like document files 
with Brain Simulator II being the application that edits them. The file 
is created with a Save or SaveAs function and then can be opened, 
edited (or run), and saved again. You can have any number of 
network files and network files can have any number of neurons and 
synapses. 

Also, like documents (as described in Chapter 7 on the User 
Interface), portions of the network can be copied, pasted, or stored 
to new network files in their own right. That means that if a portion 
of one network does something useful, it can be copied and included 
in another network. Further, portions of a network can be repeated 
within the network with multiple paste operations. 

Network files also contain a “Notes” section, which allows for a 
description of what the network does and how it might be used. 
When a network is first opened, the Notes will be displayed in a 
read-only dialog.  

The concept that an overall AGI network will be created from 
numerous instances drawn from a library of neural functionality is 
a key theory in the architecture of the system. It is a reasonable idea 
based on the knowledge that the brain contains many more neurons 
and synapses than could be explicitly described (or even initialized) 
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in our DNA. Instead, it is likely that our DNA defines basic network 
structures and these structures grow and repeat within the brain as 
it develops.  

This is an intriguing field of future research as our DNA defines 
chemistry and how it might define a brain is unknown. In AGI, many 
people presume that the human brain emerges largely devoid of 
content, but consider a horse that is born with the ability to walk, 
see, avoid obstacles, and a host of other functions which are 
immensely complex. How the neural connections needed for these 
functions are defined by the horse’s DNA remains a mystery. 

What’s in a Network File 

There is no need to know the internal structure of a network XML 
file, but knowing what information is included sheds some light on 
the information necessary for Brain Simulator operation. If you are 
familiar with the format of XML files, you’ll find fairly 
straightforward content. 

The network file includes the complete content and state of the 
network. The intent is that if you are running a network, you can 
stop the engine and save it to a file. At some future date, you can 
reload the file and continue the execution of the network exactly 
where it was left off. 

So what’s in a network? 
• State of all Neurons: Model, label, internal charge, and 

other model-dependent parameters. 
• State of all Synapses: weight, target neuron, Model. 
• State of the User Interface: Notes, scale, position, engine 

state. 
• State of all Modules: label, Location, function, internal 

state as defined by the module itself, any module dialog 
display. 
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This trivial demo Network shows how the Network content is represented in an 
XML file. The intent is to show the straightforward content of the file and give 
an idea of how the representation of millions of neurons and synapses might 
result in a very large file. It is not expected that these files would be edited 
outside of the Brain Simulator. 
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This listing of the simple demo Network XML file shows the content of a 
Network. In the left column (the first part of the file) are the Network notes and 
various display parameters. This is followed by the list of Modules. Each Module 
may store different information and some Modules (like the UKS described in its 
own chapter) may have thousands of lines of content. 

Lastly (shown in the right column), the neuron array. To save space, the file 
excludes unused neurons and any values which are at default levels. Each 
neuron is identified by its ID, a label if it has one, and various other parameters. 
This is followed by the list of synapses, each of which has a weight and a target 
neuron. In the right column, note that the neuron with ID=2 has a label of “A” 
and two synapses, the first, connecting to neuron 32 with a weight of 0.9 and 
the second, to neuron 33 with a weight of 0.34. At the bottom of the column, 
Neuron ID=22, labeled “C,” is an LIF model with a leak rate of 0.23. Neuron ID=32 
is the only neuron in the Network not at its resting potential and this is indicated 
by the presence of the LastCharge=0.25 line. 
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At the time of writing, the network file does not include 
information about multiple-server configurations. A network 
running across multiple servers is stored as a single large network. 
There is currently no provision for loading a file into a multiple-
server setup. 

The Clipboard 

Chapter 7 describes how to use the clipboard to cut, copy, paste, etc. 
selected areas of a network. The key feature is to know that the 
clipboard content represents a Network in its own right. If you store 
the content of the clipboard to a file, it is stored in a format identical 
to a full network. Not only can you then load the file back into the 
clipboard for inclusion into another network, but you can open the 
stored clipboard content directly, edit it, and save it again first. 

List of Current Networks (v1.0) 

These are the networks that are distributed with the Brain Simulator 
download. 

BasicNeurons.xml—illustrates the simplest neuron models. 
CameraTest—inputs the camera on your computer to neuron 

values. 
SpeechTest—uses speech recognition and synthesis. 
SimVision—shows Sallie's simulated environment and vision. 
Imagination—shows how Sallie's internal mental model can be 

used for imagination. 
BabyTalk—learns to speak by trial-and-error learning. Where 

SpeechTest works with words, BabyTalk works with phonemes. 
Maze—shows navigation of a maze the way a 3-year-old might. 

As Sallie explores the maze, she remembers landmarks, the 
decisions she made, and the results which were achieved. These are 
the necessary components of reinforcement learning. 

Sallie—is an end-to-end AGI model using hearing, vision, and 
knowledge to learn the meanings of a few words. 

3DSim—demonstrates the 3D simulator under development. 
NeuralGraph—demonstrates how a mathematical graph can be 

implemented in neurons controlled by a module. 
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ObjectMotion—demonstrates how Sallie can move objects in her 
environment. 
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Chapter 6: 
Modules 

So far, I have described the functional network of neurons and 
synapses so now we need to address how a network can be created. 
In Chapter 7, I’ll describe how this can be done by hand, but this 
approach is only applicable to small functions. On larger functions, 
the “by-hand” approach becomes immensely tedious. 

Enter the “Module” —a powerful addition to the simulation 
process. 

Any rectangular cluster of neurons can be assigned to be a 
Module and a Module is backed by computer code in a high-level 
language. All Modules to date are written in C# but could be in any 
language supported by .NET, including C++ and Python. Modules 
have direct access to all the underlying resources of the simulator, 
including things like adding, deleting, or modifying synapses, or 
reading or changing the values of neurons. Because the code within 
the module has full control of the network, there is no limit to the 
functionality that is possible. 

Let’s start with the basics. The Module has two primary methods: 
“Initialize” and “Fire”. The Initialize method is executed only once 
when the Module is first added to a network or if requested by the 
user. The Fire function is executed once for each cycle of the Neuron 
Engine. Within the Initialize method, a Module might allocate a slew 
of synapses. These synapses can not only connect to neurons within 
the module but can connect to or from any neuron in the network, 
including neurons in other modules. Both neurons and Modules can 
also be referenced by label. Modules can also access the 
characteristics of other Modules. In this way, for example, a Module 
performing some vision function can set its dimensions as 
appropriate to the size of the input image and create synapses 
connecting the input image to its neurons. 

While all neural functions could theoretically be created in 
synapses, there are many which are much more convenient to 
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implement in code. Again, thinking of some vision function, instead 
of creating a slew of neurons in the Initialize method (to perform the 
function), the Fire method can sample the state of the neurons in the 
input image and set values for its own neurons directly—eliminating 
the need to perform the function with neurons and synapses 
altogether. 

 
This c# code demonstration Module program shows the overall structure and 
simplicity of a Module. Within the “Fire” method, the program finds a neuron by 
label and if its charge is greater than 0.5, it sets it to 1 (which fires it). Within the 
“Initialize” method you can see how to locate a neuron by its position, add a 
label, and add a synapse to another neuron. 
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Further, within its Fire method, a Module might send or receive 
signals to other functionality within the computer. For example, a 
robotic Module might sample some neuron values and then send the 
appropriate signals to various robotic servos to perform some 
action. The previously mentioned input image might accept input 
from a video camera and set neuron values as appropriate. 
Alternatively, the input image could be read from any image file. The 
huge breadth of opportunity is detailed in some of the Modules 
described in subsequent chapters. 

The layout and content of Modules are included in the network 
file when it is saved. This means that the Module might have some 
internal state and this is automatically saved and restored with the 
network. As an example, a Module such as a world simulator can 
create a set of obstacles in code and these will be saved and restored 
automatically. So, if an AGI moves an object in the simulator, it will 
stay moved for subsequent runs. 

The ability to put any code into a Module means that instead of 
using neurons, any functionality can be created in software. Modules 
may also reference each other’s methods directly but this idea is 
being phased out in favor of always interfacing through neuron 
values. 

From a programming perspective, any variables within a Module 
declared as “Public” will automatically be saved and restored in the 
XML network file unless explicitly excluded with an “[XmlIgnore]” 
directive.  

A Module might also have a dialog box. Again, using the example 
of the simulator, the dialog box can show the locations of the AGI in 
the simulation along with the positions of all the other obstacles 
within the simulated world. Other modules can have dialogs that 
display text content…for example, the speech recognition or text-
analysis modules. 

At this point, all Modules are single-threaded and run 
sequentially in each engine cycle. They are processed in the order of 
the ID of their upper-left neuron. This may be changed in the future 
and should not be relied upon. 
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Using Modules for Interfaces to the World 

Obviously, individual neurons of the Brain Simulator can’t access a 
camera or microphone for input or control a robot for output 
because all they can do is accumulate synaptic inputs and emit 
spikes. Instead, simple Modules can perform these functions. 

A Module with just a few lines of code can access a video camera 
and put the content into neurons which can be used for other 
processing. Conveniently, another Module can read images from 
files and put them into the same neurons for more repeatable 
downstream processing.  

Another Module handles incoming speech. While it would also be 
easy to create Modules that read raw microphone input, perform 
signal processing, and do speech recognition, this wheel has already 
been invented. Instead, the SpeechIn Module uses the operating 
system’s intrinsic speech recognition engine. This can be used at the 
level of firing neurons which represent individual words or at a 
lower level where neurons represent individual phonemes. For 
output, Modules can convert neural pulses to servo controls for 
robotics or speech output (again via the operating system). 

Finally, a simulator Module can simulate the functions of all the 
sensory and output functions. The advantage of a simulator is that 
the inputs can be simple and repeatable. Real-world visual and audio 
input is immensely difficult to process and within the simulator, you 
can make things as simple as you like—then rerun the exact same 
input to debug other areas of the network. 

Using Modules for Computational Efficiency 

One key argument that AGI is coming sooner than most people think 
is that there are numerous functions that a computer can perform 
much more efficiently than any array of neurons.  

Let’s consider a few examples. Consider the very simple 
networks described previously which perform logic functions. While 
it’s possible to perform these functions in neurons, they will be 
millions of times faster in a few lines of code within a Module. 

Next, consider that you have a sequence of actions you’d like to 
perform and that individual neurons can perform each individual 
action. You’d like your network to learn a “macro” that would fire 



Modules   77 
 
the individual actions in order. One way to do this is touched upon 
in the delay line described in the previous chapter. Each step in the 
delay line can learn to fire the appropriate action neuron in 
sequence. You can do this with a minimum of two neurons per 
output step plus the neurons needed to learn the sequence. This 
cumbersome process is likely what the 56 billion neurons of the 
cerebellum are doing. 

The reason this is cumbersome in neurons is two-fold. First, 
neurons in the brain don’t have specific addresses and are not 
accessible in a specific order. Second, all of the synaptic signals from 
a neuron arrive at their targets at essentially the same time. The CPU 
has a significant advantage because computer memory is inherently 
sequential. The CPU can access the Next item in RAM because the 
concept of Next is defined by the CPU’s addressing space. This is not 
the case with neurons. Neurons appear to be accessible only by the 
configuration of their synapses, that is, the content they represent. 
Also, within the simulator each neuron maintains a list of its 
synapses and the neurons they target. In a biologically plausible 
world, all these are processed simultaneously. But in a computer, it’s 
a simple matter to direct that synapses be processed sequentially. 
This is illustrated in the Universal Knowledge Store Module 
described later. 

Using Modules for Functions That are Difficult in Neurons 

We know that your binocular vision can use the differences in the 
images presented by your two eyes to estimate the distances to 
objects you see. This is the basis for the illusion created by 3D 
movies. I don’t know how the brain accomplishes this task but it is 
reasonable to assume that it is complicated. Because you know 
where things are in your immediate surroundings, even with your 
eyes closed, this estimated distance is important for processing that 
occurs downstream from object recognition. 

Rather than letting development be blocked by this problem, I 
wrote a Module that uses trigonometry to estimate visual distances. 
There is no reason to think this approach has any relation to the way 
your brain works but it accomplishes a similar goal. With this 
estimated distance information, we can continue to experiment with 
and develop the mind’s internal model of its surroundings. In future 
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development, this Module might be replaced with a more 
biologically plausible approach. Alternatively, we might conclude 
that the trigonometry approach is significantly more efficient than 
the way your brain works and the Module might continue to be used 
for computational efficiency. 

List of Current Modules (v1.0) 

Some Modules have a custom dialog which can be displayed to edit 
the Module’s parameters while the Neuron Engine is running. This 
is indicated by the text “Has Dialog” after the Module name in the 
following list. 

Module2DModel: (Has Dialog) Manages the content of the UKS to 
create persistent memory of Sallie’s two-dimensional surroundings. 
It automatically updates positions so they are correct relative to 
Sallie’s current position and orientation. Each object position has an 
associated confidence level (based on the accuracy of the distance 
estimate) and this is represented in the dialog by the length of white 
ends on segments. By temporarily adding segments or changing 
Sallie’s perceived position, Sallie can “imagine” surroundings with 
new objects or from a different point of view. 

Module2DSim: (Has dialog) Maintains Sallie’s simulated 
surroundings. Sallie’s position and orientation are maintained from 
Move and Turn Modules and directly output to Sallie’s various 
sensory Modules. Detects collisions between Sallie and objects and 
moves objects based on assumptions of center of mass and friction. 

Module2DSmell: Sallie’s limited sense of smell. This Module has 
two rows of neurons representing input from two aroma sensors 
which is the strength of a field from green objects. Within the 
simulator, only green objects have an aroma. It receives input 
directly from the Module2DSim Module.  

Module2DTouch: When one of Sallie’s arms contacts a simulated 
object, this Module fires neurons indicating the position and angle of 
the touch and whether or not the touch was at the end of an object. 
This can update information in the 2DModel since the distance value 
of touch is much more accurate than visual depth perception. 

Module2DVision: Updates information in the Module2DModel 
based on the content of the current field of view. Uses binocular 
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information from Module2DSim to estimate distances using 
trigonometry. 

Module3DSim: (Has Dialog) Allows Sallie to move about in a three-
dimensional world. Only Sallie’s visual input is shown in the dialog 
display. 

ModuleArm: Allows for control of Sallie’s individual arm positions 
in Module2DSim. Each instance of the Module controls one arm. This 
forms the basis for Sallie’s ability to explore objects by touch along 
with Module2DTouch. 

ModuleAudible: Works with the UKS to manage Phonemes, Words, 
and Phrases. This is analogous to the Module2DModel in that it 
manages UKS content related to Sallie’s surroundings. 

ModuleBase: (Has Dialog) This is the Base Class from which all 
other modules are derived. Useful only from the programming 
interface. 

ModuleBehavior: This is somewhat analogous to the brain’s 
cerebellum in that it can manage sequences of primitive physical 
behaviors. For example, to turn or move a specific amount, multiple 
smaller moves or turns may be required. 

ModuleBoundary: Works with ModuleImageFile to find visual 
boundaries. 

ModuleCamera: Analogous to a retina. Takes input from an 
attached video camera and sets neuron values to represent the 
colors seen at specific locations. 

ModuleColorComponent: Converts a neuron with the Color model 
into neurons that have firing rates appropriate to the RGB and 
brightness components of the color. 

ModuleCommand: (Has Dialog) Can read, edit, and execute test 
scripts. Each step can fire any labeled neurons in any Module by 
name and can test for (and wait for) results. 

ModuleEvent: Works with the UKS to manage memory of events, 
actions, and outcomes so that Sallie can learn which behaviors are 
best in various situations. 

ModuleFireOldest: This will fire the neuron within the Module 
which fired the longest ago. This could be useful in selecting things 
to forget—if a neuron hasn’t fired in a long time, it possibly doesn’t 
contain useful information. 
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ModuleGoToDest: This Module demonstrates the use of 
imagination in determining a route. The Module works with the 2D 
model to imagine the world from a different (remembered) point of 
view. 

ModuleGraph: This predecessor to ModuleUKS implements 
parent/child, next, and other relationships in neurons. 

ModuleGrayScale: This Module works with ModuleImageFile 
module to generate a grayscale image from the component color 
values. 

ModuleHearWords: This Module works with ModuleUKS to 
manage word and phrase storage. 

ModuleImageFile: (Has Dialog) This Module reads an image file in 
BMP or PNG format and sets color neuron values as appropriate. 
Optionally, it will cycle sequentially through all the image files in a 
directory, loading them one at a time. 

ModuleKBDebug: (Has Dialog) This Module records neuron firings 
in and out of the ModuleUKSN to create a transaction display. 

ModuleLife: This allocates synapses to make an array of neurons 
act to simulate Conway’s Game of Life. 

ModuleLineFinder: This Module works with the Boundary Module 
to find linear sections of a boundary. Future development will create 
ModuleArcFinder. 

ModuleMotor: Analogous to the brain’s motor cortex. This Module 
consolidates Move and Turn functions.  

ModuleMove: This Module distributes motion required to 
Module2DSim, Module2DModel, Module3DVision, and 
Module2DVision. 

ModuleMoveObject: This Module works with Module2DModel to 
allow Sallie to create a sequence of actions to achieve a goal. She first 
moves an object to learn how her pushing on it causes it to move or 
rotate and then moves the object to a goal location. 

ModuleNavigate: This Module works in the 2D environment using 
ModuleUKS to allow Sallie to solve mazes using landmark memory. 

ModuleNull: This Module does nothing. It contains a small amount 
of demonstration code to show how neurons and synapses can be 
manipulated. 
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ModuleSpeakPhonemes: (Has Dialog) This Module works with 
ModuleUKS to learn words in terms of underlying Phonemes.  

ModuleSpeakWords: Uses the Windows speech synthesizer to 
create speech with ModuleUKS. 

ModuleSpeechIn: Uses the Windows speech recognition system to 
create neuron firings from speech. 

ModuleSpeechOut: Uses the Windows speech synthesizer to 
create speech from neuron firings. 

ModuleStrokeFinder: (Has Dialog) Along with ModuleLineFinder 
locates strokes within an image. A “stroke” is the center between 
two parallel boundaries. 

ModuleTurn: Distributes Sallie’s rotation to modules that need the 
information: Module2DSim, Module3DSim, Module2DModel, and 
Module2DVision. 

ModuleUKS: (Has Dialog) The abstract Universal Knowledge 
Store. (See Chapter 10). 

ModuleUKSN: The Universal Knowledge Store with the addition of 
a neuron interface. 
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Chapter 7: 
The User Interface 

One thing which sets the Brain Simulator II apart from other neural 
simulators is its user interface, which includes a display of the 
content of the simulator. Rather than a black box that simply 
displays an answer, the neuron content and Module dialogs can 
show exactly what is going on as the network evolves. The main 
thrust of the Brain Simulator is to create AGI and, along the way, 
various pieces need to fit together and coordinate to create a whole. 
Being able to see the pieces is a key feature. 

This chapter describes the user interface in detail, but the Brain 
Simulator is a standard GUI program with a few menus, button 
controls, and a display of the neuron array and its Modules. As such, 
you may choose to just look at the pictures to get an idea of how the 
system works and start using the program. If you run into questions, 
this chapter makes a good reference. 

Overall Layout 

The majority of the screen is devoted to the display of the array of 
neurons and synapses—the network display. Colors represent the 
current membrane potential of the neurons or the weights of 
synapses. Labels within the neuron array are for reference and are 
typically not used for computation. 

In general, the menus control the network files, Neuron Engine, 
and the display. The command bar has two sections, one for the 
network display and control and the other for Neuron Engine 
control. Status messages are displayed at the bottom of the screen. 

The interface has been tested with a billion neurons, so being able 
to zoom to the desired location within the neuron array quickly is 
important.  
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The overall layout of the Brain Simulator user interface is focused on the display 
of the neuron array. Menus let you load and save the neuron array to a file. In 
the command bar, one cluster controls the display and another controls the 
Neuron Engine. 

Controlling Network Files 

As mentioned previously, networks are stored in files in XML format. 
You can think of the Brain Simulator as an editor for these files. With 
this thinking, all the file control is similar to that found in a text 
editor. When the program starts, it will default to displaying the 
neuron array which was last used. If that file isn’t accessible, a 
sample blank neuron array will be displayed. 
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The “File” menu controls saving and restoring neuron networks as is detailed in 
this section. The “Library” section lists the networks included with the program.  

New Files 

To create a new file, use the “File | New” command to bring up the 
file creation dialog. The dialog will display the free memory on your 
computer and estimate the maximum size of network you can 
create. Like a word processor, creating a new file does not save it. 
You must subsequently perform a “File | Save” (or “Save As”) if you 
wish to subsequently retrieve your network. 

In the New Neuron Array dialog box, the Rows and Columns 
numbers you enter define maximums for the network. You can 
increase these later but you cannot subsequently reduce the size of 
a network. On the other hand, you can create a new one of different 
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size and use the clipboard functions to copy the network content 
from the original to this new file. 

 

 
The dialog for creating new files lets you set the size of the Network and 
(optionally) create random synapses for every neuron and configure the 
Network to use multiple Neuron Servers.  

You can initialize the refractory period for the network (this can 
be changed later on in the “Neuron Engine” menu). The refractory 
period defines the time base for the network and can be left at 0 for 
most networks. On this dialog, you may also set up the use of Neuron 
Servers, which is covered later in this chapter.  

When you press OK, the new network will be created and 
displayed. With large networks (many millions of neurons), network 
allocation may take a significant amount of time and a progress bar 
will show the progress of allocating neurons and random synapses. 

Loading Networks 

The commands, “File | Open”, “File | Recent”, and “File | Library” 
(which lists the network files included with the distribution) all load 
the related network file. If the network has “Notes”, they will be 
displayed (read-only) when the network opens unless you check the 
“Don’t show this again” checkbox. If you subsequently select “Edit | 
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Notes”, the same notes will be displayed in an editable form and 
these edited notes will be saved with the Network when it is next 
saved. 

The “File | Properties” command will display a dialog with 
information about the current network. You can increase the 
number of rows or columns. Neurons are only “in use” if they are 
connected by at least one synapse or have a label. 

 
The File | Properties dialog displays basic information about the Network. 

When you close the program, you will be prompted to save the 
network file (except in the case of library networks) on the 
assumption that since this is a real-time processing program, the 
content will necessarily have changed. Library network files are 
installed in a read-only directory. If you would like to modify a 
library network file, you’ll need to use the “Save as” command to 
save it somewhere else. 
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Controlling the Neuron Display 

 
The “View” menu shows the commands for controlling the neuron display. 

Neurons and Synapses 

Neurons are displayed as disks or as rectangles or individual 
pixels depending on the display scale. Neurons are usually shown as 
disks in the figures in this text. As the display is zoomed out to show 
more neurons, such as for image processing, faster pixel and 
rectangle displays are used. 

 
Showing the display of the Camera Module when it is zoomed back to show 
many neurons. Each neuron may be a single pixel on the display. This also shows 
how, at very small scales, only the neurons within a selection box are displayed 
(described later). 
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Color codes for Neurons: Neurons are color-coded to indicate the 
state of their internal charge (membrane potential). A bright blue 
neuron has a charge of zero. A dull-blue neuron is not “in use” as it 
has no label and no synapses connecting to or from it. A firing neuron 
is white (an internal charge of 1.0 or more). In between, increasing 
neural charge goes through a rainbow from light blue to green, 
yellow, orange, and red. Neurons that have the Color model selected 
will instead display the color of their internal value.  

A single neuron may be surrounded by a light-blue circle. It is the 
“current” neuron and will be the target of paste, move, or multiple-
synapse actions which are described later. 

Neurons with the LIF model will show “L=” followed by the 
leakage rate. Neurons with the Burst model will show “B=” followed 
by the number of spikes in each burst. Neurons with the Random 
model will show “R=” followed by the mean firing rate (in cycles). 
Neurons with the Always model will show “A=” followed by the 
firing rate (in cycles). 

Enabling/disabling the Display of All Synapses: The checkbox labeled 
“All Synapses” and the menu command “View | Show synapses” 
control whether or not synapses are displayed for the entire 
network. If the display of synapses is not needed it should be 
disabled as a large number of synapses can slow display 
performance. When the display of all synapses is disabled, only 
synapses from individual neurons which have been selected to 
“Show Synapses” will show. For slight differentiation, these 
individually-selected synapses display in front of neurons while 
others are behind neurons. 

Only synapses with either a source or target neuron within the 
current neuron display will be shown—a synapse connecting two 
off-screen neurons will not show even if it crosses the display area. 
For UI performance reasons, a maximum of 2,000 synapses will be 
displayed; others will be ignored. In this case, there will be a warning 
in the status bar indicating that there are too many synapses to 
display. 

Synapses are displayed as a color-coded line with an arrowhead 
indicating the direction of the connection. A narrower arrowhead 
indicates that the synapse is “Fixed” (see below). 
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The wider arrow on the lower synapse indicates that its weight may be changed 
by the Neuron Engine. The weight of the upper synapse is fixed. These synapses 
are both white, indicating a weight of 1.0. 

Color codes for positive synapse weights are the same as neuron 
colors. Negative (inhibitory) weights progress from light gray to 
black over the range of 0 to -1. 

Mouse Cursor Shapes 

As the mouse cursor moves through the neuron display it can 
take one of several forms depending on its location and the function 
which will be performed. 

 
Either Shift key is pressed or the Pan Display Control 
(button with the same icon) has been pressed. Drag to 
reposition the display. 

 

The mouse cursor is between neurons. Drag to select a 
group of neurons. Ctrl+drag to append another rectangle 
to the selection. You can create odd-shaped selections 
with multiple selection rectangles. Right-click to display 
the selection Context Menu. 

 

The mouse cursor is over a neuron. Click to fire the 
neuron and select it as the “current” neuron. Drag to 
create a synapse. Right-click to show the neuron context 
menu. 

 

The mouse cursor is over a synapse. Right-click to 
display the synapse context menu. 
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The mouse cursor is on a Module. Drag to move the 
module. Right-click to display the Module context menu 
(see below). Similar direction arrows which appear 
when the mouse cursor is near the edge of a Module 
allow you to resize the Module by dragging the edge. 
 

Display Control 

Neuron arrays can be huge and have been tested with up to a 
billion neurons, so it is valuable to be able to display the area of 
interest easily. You can zoom and pan through the display several 
ways, with control buttons, scroll bars, and just the mouse. As the 
display scale changes, the amount of detail in the display changes to 
help keep the display-update speed as fast as possible. As you shrink 
the display, most neurons are not displayed and red lines form a grid 
with reference numbers which can be useful in locating specific 
areas of the network if it is large. Areas of neurons can be displayed 
selectively by adding a selection. 

Any time the mouse cursor is in the neuron display, pressing 
either keyboard Shift key changes the mouse cursor to a hand to 
allow you to pan the display with the mouse.  

The mouse wheel changes the display scale as do “Zoom In” and 
“Zoom Out” buttons and related menu commands. The “Zoom to 
Origin” button and related “View | Show All” and “View | Origin” 
menu commands can get you quickly to a desired display. The “Zoom 
to Origin” button toggles between “Show All” which shows the entire 
network” and “Show Origin” which shows the upper left corner of 
the network. On networks which will fit completely on the screen, 
these two displays may appear the same.  

Like the pan function, the scrollbars at the bottom and right side 
of the neuron display allow you to reposition it horizontally or 
vertically. The arrow buttons at the ends of the scrollbars will move 
the display by one row or column of neurons at a time. The areas of 
the scrollbars between the thumb-track slider and the arrow 
buttons will move the display one screen-full at a time when clicked. 

The neuron display updates itself independently of the Neuron 
Engine. This means that every update of the neuron display might 
represent multiple cycles of the engine. The display represents a 
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snapshot of the neuron states at a specific point in time as the 
Neuron Engine is paused momentarily for the display to be updated. 
The elapsed time used to update the display is shown in milliseconds 
in the Status Bar and can be useful in learning how various display 
options change the display rate (all the parameters which control 
what items are displayed at which zoom levels are easily changed by 
programmers by editing the DisplayParams.cs source file). 

 
This display with a million neurons is zoomed smaller until only the reference 
grid and Modules are seen. Each reference grid square is 250x250 or 62,500 
neurons. The area of displayed neurons is created by adding a selection to the 
desired area. This can be useful if the neurons of a particular area represent an 
image or the overall firing pattern is useful. In this instance, the selection area 
overlaps ModuleImageFile which can read image data from a file. The 
surrounding neurons in the selection are bright blue, indicating a membrane 
potential of 0.0. 

Controlling the Neuron Engine 

In general, the Neuron Engine runs continuously and there is no 
need to stop the engine to change the network (just as there is no 
need to stop your brain when various connections change within it). 
Internally, some functions (like save) will pause the engine while the 
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process completes so the neuron state of the entire array is 
consistent. 

The Neuron Engine speed is controlled internally by adding a 
delay at the end of each processing cycle. When the speed is set to 
zero (the slider is all the way to the left) the inter-cycle delay is 1 
second. When the speed is set to 10 (the slider is all the way to the 
right), the delay is 0 so the Neuron Engine is running as fast as it can.  

The Neuron Engine status display shows the speed, a cycle 
counter, the number of neurons which fired in the previous cycle, 
and how many milliseconds elapsed during an engine cycle, which is 
a moving average of the previous 100 cycles.  

You can control the Neuron Engine either with the Controls or the 
Neuron Engine menu. “Reset”-ting the engine calls the Initialize 
method on all the Modules in the network. Run and Pause start and 
stop the Neuron Engine. “Step” will execute a single cycle of the 
engine and will also pause it if it is running. “Speed” duplicates the 
function of the Speed Slider and introduces a delay between engine 
cycles. 

“Refractory” changes the refractory period (in engine cycles) for 
all the neurons in the network. This should be changed cautiously as 
virtually all networks rely on a consistent refractory period and 
changing it will likely require corresponding changes to the network 
to keep it working. 

“Threads” shows or changes the number of computing threads 
used by the Neuron Engine. This does not normally need to be 
changed but can be useful for optimizing Neuron Engine speed. 
Normally, the neurons in the array are distributed equally among 
the threads. Assuming an even distribution of firing and synapses, 
the computational load will be distributed evenly among the CPU 
cores. This doesn’t usually need to be changed except for high-
performance testing. Since the UI thread is always running, it’s a 
good idea to set the thread count to one less than some multiple of 
the number of cores. If you have four cores and set the thread count 
to five, the first four threads can run in parallel but the fifth (orphan) 
thread will have to run when another has completed, potentially 
doubling the overall time it takes to process a cycle. 
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The Neuron Engine menu allows you to set the various engine parameters. 

Editing Networks 

Neurons 

Clicking a neuron will cause it to fire. If it was firing continuously, 
clicking the neuron will cause it to stop firing. Double-clicking a 
neuron will disable or enable it. 

Right-click a neuron to display its context menu. Each neuron has 
a numeric ID, which is the location of the neuron within the neuron 
array.  
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Right-click any neuron to display its context menu. Sub-menus show incoming 
and outgoing synapses. In the synapse menu, the first number is the weight, the 
second is the target neuron ID, and the third (if it exists) is the neuron label. In 
this case, the neuron labels are numeric too. 

The ID is followed by a checkbox which is only available if you 
have selected one or more rectangular groups of neurons (covered 
later). When this box is checked, any changes you make to this 
neuron will be applied to all the neurons in the selection. Only edited 
entries will be applied so, for example, you’d like to set the neuron 
charge to 0.08 on all the neurons but the charge on this neurons is 
already 0.08, you’ll need to change it to something else and back. 
Changed fields which will be applied show a green background. 

Each neuron may carry a label. If you add a label, it can be just a 
few characters and will reside within the neuron disk or it can be 
longer, extending beyond the disk of the neuron to act as a notation 
in the network. Neuron labels are not typically used in computation 
but can be used to reference the neuron. Duplicate labels are allowed 
but a warning is displayed if you set a label which occurs elsewhere 
in the network. The neuron label may be used when editing a 
synapse or when pasting a selection as described later. 
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If the neuron label is set, you’ll also have the option of entering a 
tooltip. This text will show as your mouse cursor moves over the 
neuron. It is handy to be able to keep the neuron label to just a few 
characters and add a longer explanation to the tooltip if needed. 

In the dropdown, you can select the model to be used for this 
neuron. This is followed by the neuron’s charge or membrane 
potential. You can edit it. There is a dropdown but you can key in any 
value you like. New values you enter will be added to the dropdown 
for future use. 

For this and the following entries, numeric text entries must be 
syntactically correct. Illegal entries will show a red background and 
will be ignored. Numbers which are outside the usual range for the 
value will have a yellow background but will be set as requested. If 
you set a neuron charge to 1.23, for example, the system will set it, 
but the neuron won’t necessarily make use of the value outside the 
range of [0,1]. 

Below this, several model-specific parameters may be displayed 
which are described at the end of this section. In this case, the Leak 
Rate and Axon Delay are specific to the LIF model. 

The checkbox, “Enabled,” can be used to temporarily disable a 
neuron or group of neurons. 

The checkbox, “Show Synapses,” will display the synapses 
originating from this neuron. It does not override the “All Synapses” 
option which displays synapses regardless of the settings of 
individual neurons, or various limits in display size and synapse 
count which may prevent synapses from showing. 

The checkbox, “Record Firing History” will begin recording for 
this neuron and will open the firing history window if it was not 
already open.  

The “Clear Synapses” entry will remove all the incoming and 
outgoing synapses on this neuron. 

Lists of synapses to and from this neuron are also available. Each 
list shows the weight and the target neuron (or source neuron in the 
case of an incoming synapse). The neuron’s label will be displayed if 
it has one. If you click in the area of the weight, it will open the 
synapse context menu so you can change the weight. If you click on 
the target neuron ID, the context menu for the target (or source) 
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neuron will be opened. If that neuron is not visible or the new 
context menu wouldn’t fit at the neuron’s location, the neuron 
display will pan so that the target neuron is near the upper left of the 
screen. 

The entry “Paste Here” will insert the content of the clipboard at 
this current location. The entry “Move Here” will move the content 
of the current selection to this current location. These are covered in 
detail under “Clipboard” below. 

The “Connect Multiple Synapses” command has a submenu with 
three commands which act in concert with a selection. The 
command “Selection to Here” and “Here to Selection” will add a 
synapse with the current default characteristics between the 
current neuron and every neuron in the selection. The two 
commands differ in the direction of the synapses. The command 
“Mutual Suppression” will add a synapse of fixed weight -1 between 
every two synapses in the current selection. 

For the following commands: If the  
“Apply changes to selection” checkbox is checked, the change will 
apply to all the neurons in the selection:  

• Changing the neuron’s label. 
• Setting the neuron’s charge.  
• Changing the neuron’s model.  
• Changing any of the parameters custom to the model. 
• Selecting whether synapses are displayed. 
• Adding or removing the neuron from the Firing History. 

If you change the label, the new labels in the selection will be 
incremented from the label you set.  

Model-Specific Entries 

For neurons other than the IF and FloatValue models, custom 
parameters are available as follows: 

Color model: the Charge is displayed as the hexadecimal value 
which is the ARGB representation of the color.  

LIF model: the Leak Rate and Axon Delay are available. The Leak 
Rate is the fraction by which the charge will be reduced in each 
engine cycle. The Axon Delay is the number of engine cycles after a 
neuron fires when the synapses will deliver their weights to their 
target neurons.  
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Random model: the Mean is the number of engine cycles that the 
neuron will fire if the Std Dev is zero—the average firing rate. The 
Std Dev is the standard deviation of a Gaussian distribution of spike 
times around the mean. Setting the Std Dev to -1 will disable the 
random firing.  

Burst model: The Count is the number of spikes that will be 
created and the Rate is the number of cycles between spikes. 

Always model: The Delay is the number of Neuron Engine cycles 
between spikes. 

Synapses 

To add a synapse, position the mouse cursor over the source 
neuron (note the up-arrow cursor) and drag to the target neuron. 
The synapse will be added with default characteristics (initially 
weight=1.0, Fixed). You can Undo an added synapse with “Edit | 
Undo” or Ctrl+z. 

Right-click a synapse (when the cursor is  ) to display the 
synapse context menu and change its characteristics. You can 
change its weight by selecting a new weight or entering a weight in 
the text box. You can press DEL on the keyboard or select “Delete” 
from the menu to delete the synapse. 

The source and target neurons will be shown. If they have labels, 
these will appear, otherwise the neuron IDs will be shown. You can 
move a synapse by entering a new source or target neuron IDs or 
labels. In the event that there is more than one neuron in the 
network with the same label, the one with the lowest ID will be used.  

When you display the context menu for any synapse, the 
characteristics of that synapse are set as the default characteristics 
that will subsequently be used when new synapses are added. This 
means that a quick way to add a synapse of a given weight is to right-
click on a similar synapse to set the defaults, press ESC to close the 
menu, then add your new synapse.  
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Right-click on a synapse to display the synapse context menu.  

The “Model” dropdown selects the synapse model used by the 
Neuron Engine to alter the weight during execution. The Neuron 
Engine uses a lookup table to determine how much to change the 
weight. 

You can set the weight directly by entering it numerically in the 
text box or by selecting one of the common weights on the 
dropdown. You can delete the synapses with the “Delete” command 
or by pressing the DEL key on the keyboard. 

Clipboard 

The clipboard is a powerful function based on the expectation that 
the brain or an AGI will consist of repeating patterns of neurons. The 
clipboard can be used to easily replicate areas of functioning 
neurons from one network to another. 
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The “Edit” menu contains commands for accessing the clipboard. For larger 
networks, the “Find Neuron” and “Find Module” commands can be useful. 
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Using the clipboard makes it easy to create multiple copies of useful functioning 
clusters of neurons. The synapse pattern is copied along with the internal state 
of neurons so the pasted cluster can continue the computation of the cluster it 
was copied from. 

When the mouse cursor is between neuron disks and is displayed 
as a cross, areas of neurons can be selected by dragging the mouse 
across the area. The selected rectangle is shown in pink. To make a 
complex selection shape, you can hold the Ctrl key and select 
multiple rectangular areas. These rectangles may overlap or be 
discontinuous but form a single selection. 

Once a selection is made, several commands are available. As 
mentioned in the previous section, certain commands on individual 
neurons and synapses will be applied to all neurons and synapses in 
the selection. For example, you can change the model of all the 
neurons in a selection by changing the model of any neuron in the 
selection.  

Several commands which act on the clipboard are available on 
the “Edit” menu, on the neuron’s context menu, and via keyboard 
shortcuts. 

Copy: A selected area can be copied to the clipboard. The 
clipboard can be considered to be a network in its own right. Once 
copied to the clipboard, this smaller network can be pasted 
elsewhere into the same network, or a different network can be 
opened and the clipboard content can be pasted into a second 
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network. The copy command can be performed with the “Edit | 
Copy” menu entry or with Ctrl-c. Synapses that cross in or out of the 
selection (“boundary neurons”) are included in the clipboard if the 
neurons they connect outside the selection have labels. 

Delete: Clears all the neurons in the selection and removes any 
synapses which are sourced by or targeted to neurons in the 
selection. The Delete command can be performed with the “Edit | 
Delete” command or with the “Del” key. 

Cut: this combines the Copy and Delete commands. The Cut 
command can be performed with the “Edit | Cut” menu entry or the 
Ctrl-x key. 

Paste: This copies the content of the clipboard into the network 
at the location you specify. You will be warned if the paste will 
overwrite neurons in the target and the paste must fit within the 
bounds of the neuron array. The Paste (and Move below) command 
needs a destination location within the neuron array. This is 
provided automatically if the paste command is selected from the 
neuron context menu but to use the “Edit | Paste” or Ctrl-v command 
you must first set the target location by clicking a neuron which will 
be displayed with a light-blue ring. Synapses which cross the 
clipboard boundary will be replicated/stretched if the neuron 
outside the boundary has a label. 

Move: The move command is slightly different in that it does not 
require copying to the clipboard. You can simply select a group of 
neurons and use the command “Edit | Move” or the “Move Here” on 
the neuron context menu. Unlike copy/paste, all synapses that cross 
in or out of the selection are stretched whether or not the neurons 
have labels. You can also drag a selection but if neurons in the 
selection collide with other neurons in use, you’ll be warned. If you 
proceed, these in-use neurons will become part of the selection and 
will be dragged along with it. 

The content of the clipboard can be considered a network in its 
own right. The command “Edit | Save Clipboard” will prompt you for 
a file name and will save the content of the clipboard to a network 
XML file. That XML file can subsequently be opened and used as a 
network on its own. The command “Edit | Load Clipboard” will read 
a file into the clipboard for pasting into another network. Boundary 
neurons are not saved to a file. 
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The clipboard is local to the Brain Simulator and is not usable for 
passing data to other applications. 

Other Selection Functions 

If your cursor is a motion arrow ( ) within a selection, you can 
right-click for the selection context menu. You can copy, cut, and 
delete the content of the selection. You can clear the selection.  

“Mutual Suppression” will add synapses between all pairs of 
neuron in the selection with a weight of -1.0. 

“Random Synapses” will add synapses with random targets and 
random weights to all the neurons in the selection. The number of 
synapses added to each neuron is controlled by the “Count” textbox 
which should be set first. 

The Command “Reset Hebbian Weights” will set the weights to 
zero of all non-fixed-weight synapses which are sourced in the 
selection area. This can be useful for testing networks which store 
information in Hebbian weights. 

 
The context menu for a selection has a dropdown that allows converting a 
rectangular selection area into a Module. 

Lastly, a single selection rectangle can be converted to a Module 
by selecting the Module type from the dropdown list. The function 
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of the module is defined by the software within the Module itself 
(See Chapter 6 for a list of Modules). 

Once a Module has been added to a network, the mouse cursor 
changes ins the area within the Module (but outside neuron disks). 
The cursor changes into appropriate drag handles which can be used 
to move or change the size of the Module. 

 
The context menu for a Module. 

You can right-click a Module to bring up its context menu. From 
the context menu, the Module can be deleted, initialized, or named. 
If the Module has an internal description it can be displayed with 
“Info…”.  

The dimensions of the module can be modified. This is the best 
way to create large Modules with specific dimensions which would 
be difficult to set with the drag handles. Use caution because there is 
no check to prevent Modules from overlapping each other which 
could lead to unpredictable results. 

If the Module has a dialog box, you can display it from the context 
menu. Each dialog is custom to the Module. 

Firing History 

Firing history can be collected on any set of neurons. To add neurons 
to the firing history, check the “Record Firing History” checkbox in a 
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neuron’s context menu. History will commence when one of the 
recording neurons fires. Then firing history will be collected 
continuously as long as the engine is running. 

 
The Neuron Firing History window shows the value of the internal charge for the 
selected neurons in the form of a timing diagram. Labels at the left of traces 
show the neuron’s label, if it has one, or the neuron’s ID number. 

To control the Firing History display window, you can use the 
buttons in the upper right to either remove all the previous firing 
history but continue recording or to clear all the firing and stop 
recording.  

If the mouse cursor is within the Firing History window (with a 
normal arrow cursor), the mouse wheel can be used to expand the 
display. Once expanded, the scrollbar at the bottom of the window 
can be used to scroll through the content in the window, even when 
expanded data is still being collected. When the scrollbar is at the 
right-most edge of the window, live data is displayed as it is 
collected. 

The traces in the window are labeled with the neuron ID or the 
neuron label if it has one. The order of the traces in the window can 
be controlled by dragging the labels to new locations. 
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The charge level of each neuron is recorded and displayed 
accurately but the waveform of the spikes themselves are 
synthesized. 

Multiple Servers 

The Neuron Server can be operated simultaneously on any number 
of computers on a local network. The IP addresses of the machines 
must all be in the same family (the first three fields of the IP4 
addresses must be the same). One machine must operate the Brain 
Simulator II program to control the other servers and the control 
machine may also be a server. Servers may have different 
performance and resource characteristics and this should be taken 
into account when configuring the system. 

Because of its use of the network, your computer’s firewall will 
need to be edited to allow this network traffic. If you are using 
Windows Firewall, there is an application being developed which 
will automatically make these changes. If you are editing your own, 
you need to know that there are two applications which need to be 
allowed: BrainSimulator.exe and NeuronServer.exe. Both 
applications need to be able to send via UDP, both broadcasts and 
targeted messages. Neuron Server uses ports 49001, 49002, and 
49003 while Brain Simulator uses ports 49002 and 49003.  

There are two steps needed to use the Neuron Server. On each 
server machine, start the server program (NeuronServer.exe). On 
the Brain Simulator machine, use the “File | New” dialog to configure 
which neurons in the network will reside on which servers. Check 
the “Use Servers” checkbox and press “Refresh” to find all the 
Neuron Servers on the network. The servers will be listed in the text 
window and the neurons will be initially assigned to them by 
distributing them evenly. You can edit the textbox to assign the 
neurons differently if you choose.  

As of the current release, server configuration information is not 
saved with the network and you can only use the New Network 
dialog box to set up server configurations. To load an existing 
network to multiple servers: Create a new with the correct neuron 
counts for the network to be loaded. Then load the network and it 
will use the configuration you juse entered.  
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Performance capabilities and limitations: The Neuron Engine in the 
Neuron Server is identical to the one used in the Brain Simulator’s 
single-computer configuration. This means that the performance of 
the Neuron Engine will be identical to the non-server version for 
synapses that do not cross a machine boundary (and all neurons). 
Synapses that do cross a machine boundary will be substantially 
slower. Also, the overhead of multiple machine control adds a few 
milliseconds to each cycle, and the performance of the user interface 
is substantially reduced. See Chapter 12 on “Performance” for 
details. 

Keyboard Shortcut Summary 

Ctrl-z: Undo 
Ctrl-a: Select all 
Ctrl-x: Cut, copy to clipboard and delete from neuron array 
Ctrl-c: Copy to clipboard 
Ctrl-v: Paste from clipboard 
Ctrl-m: Move neurons in selection area to target neuron 
DEL: Delete neurons/synapses in selection 
ESC: Close Selection or close context menu without saving 
F1: Help Getting Started 

Help and Support 

 
The Help menu shows many ways you can get support or contribute to the 
project. 

Getting Started: Opens a browser window and displays the 
overview help file with suggestions for first-time users. 
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Register: Opens a browser window to the software registration 
page.  

Contents (online): Opens a browser window with the online help 
content which includes this chapter. 

Report bugs, request features (online): Opens a browser to the 
GitHub repository for the project. After you’ve created a GitHub user 
name, you can enter bugs or suggest features directly to the “Issues” 
database. You can download the source code too. If you want to 
contribute the project, request access to the code base. 

Join Discussion (online): Opens a browser window to the Facebook 
BrainSim group page. Join the group for all the latest information. 

About: Displays version and contributor information. 

Video Links 

“Brain Simulator II Overview” 
http://futureai.guru/videos?id=141 

http://futureai.guru/videos?id=141
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Chapter 8: 
The Programming Interface 

This chapter gives an overview of the programming interface for the 
Brain Simulator II. This is a more strategic overview and not a 
description of features and interfaces as these are covered in the 
code itself, which can be downloaded from GitHub at the URL: 
https://github.com/FutureAIGuru/BrainSimII. Even if you’re not a 
programmer, you might want to read this chapter to get an idea of 
the capabilities and limitations of the Brain Simulator and AGI 
development in general. 

There are three ways to program the Brain Simulator II in 
addition to creating networks through the user interface:  

• by interacting directly with the Neuron Engine, bypassing 
the user interface.  

• by writing new custom Modules.  
• by making any other customizations, such as adding new 

neuron models. 

To modify the source code, you’ll want to download the free 
Visual Studio (Community Edition) from Microsoft. In setup, you’ll 
need to enable the C# and C++ languages and any other language you 
choose to use. 

The Neuron Engine interface 

The Neuron Engine is written in C++, has been carefully optimized, 
and is extremely fast. There is a C++ demonstration program 
(CppEngineTest) included in the source code which shows how the 
functionality of the engine can be accessed.   

There is a similar program in C# (CsEngineTest) that uses an 
intermediate translation library, the NeuronEngineWrapper. With 
this second method, the Neuron Engine is accessible from any 
language supported by .NET. The Brain Simulator itself interfaces to 
the Neuron Engine through a translation module 
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(NeuronHandler.cs) which should also be useful for a programmer 
using the Neuron Engine from a managed .NET language.  

This second method uses the same underlying engine code so 
there is no loss of performance on the neuron array itself. But 
because of the language translation, the interface to the engine is 
somewhat slower. This may be an issue if a network is to be defined 
with many millions or billions of neurons or synapses. 

This programming level does not support Modules. The major 
steps in using either the C++ or C# (.NET) interface are: 

1. Define the neuron array and give its dimension. At this 
programming level, the neuron array is one-dimensional—
the two-dimensionality is all created by the Brain 
Simulator’s user interface. 

2. Set neuron parameters and add synapses. 
3. Repeatedly call the “Fire” method. The engine will execute a 

single engine cycle every time this is called. After each call to 
“Fire” you can retrieve the count of neurons that fired. 

4. Retrieve neuron information from the engine to get the 
results of the computation. 

Within the Neuron Engine, the principal objects are NeuronBase, 
SynapseBase, and NeuronArrayBase. Every NeuronBase object 
contains a Vector of SynapsBase objects and the NeuronArrayBase 
contains a vector of NeuronBase objects. You can have multiple 
NeuronArrayBase objects if desired. Only physical memory limits 
the number of neurons and synapses you can use. 

Adding a New Neuron or Synapse Model 

Within the Neuron Engine, edit the NeuronBase.h file and add your 
new model name to the enum near the beginning of the file. Then, 
edit the NeuronBase.cpp file and edit the “Fire1” and “Fire2” 
methods to create the functionality for your new model. Within the 
code, you can see how the various existing models are handled. This 
is all that’s needed to make the new neuron model work in the 
Neuron Engine. 

To make your new model also accessible from the Brain 
Simulator user interface, you’ll need to edit Neuron.cs and add your 
new model type to the modelType enum and a tooltip to the 
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modelToolTip array. Then you’ll need to edit NeuronView.cs, edit 
the GetNeuronView method to change the way the neuron displays 
(if you want), and likewise the SetCustomCMItems method if you 
want the context menu to display custom parameters. 

The process for synapses is similar except that the enum change 
is in the file SynapseBase.h while the functionality of the synapse is 
in NeuronBase.cpp. For the user interface, similar changes will be 
needed for Synapse.cs and SynapseView.cs. 

The Module Interface  

As previously described, Brain Simulator Modules are an extremely 
powerful programming tool.  

To create your own Modules, there are template files (under the 
“Tools” folder in the source code). These can be added to Visual 
Studio to make creating Modules and their dialogs easy. Then within 
Visual Studio, you can “Add new item” and just as you might select 
C# Class, you can select “Module” to create a new Module or “Module 
Dlg” to create a custom dialog box for a Module. 

A Module can do anything the computer can do without 
restriction. All Modules are inherited from the class ModuleBase. 
Module Dialogs inherit from ModuleBaseDlg. These take care of all 
the housekeeping. 

The objects within the Neuron Engine are mirrored in the Brain 
Simulator User Interface code on as as-needed basis by the objects 
Neuron, Synapse, and NeuronArray. As such, within a module, you 
have full access to controlling the engine. Be aware that when you 
request neuron information from the NeuronArray, a request is 
forwarded to the Neuron Engine and the returned data is properly 
reformatted. If this results in performance issues, you may choose to 
use the Neuron Engine interface directly as described above. 

The Module contains two principal functions:  
1. The Initialize method is called when the Module is added 

to a Network, whenever the “Initialize” command is 
selected from the context menu, or the Neuron Engine is 
initialized. Note that the Initialize method is not called 
when the network is loaded from a network XML file as 
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this would change the state of the network which is 
otherwise unaltered by Saving and Opening. 

2. The Module’s “Fire” method is called once prior to each 
cycle of the Neuron Engine.  

If you need to reinitialize something whenever a file is loaded, the 
method SetupAfterLoad is provided. An example of this is initializing 
the underlying speech engine any time a file using the SpeechIn 
Module is loaded. Similarly, if your module uses data structures that 
don’t stream well into XML, the Method SetupBeforeSave can be 
used. An example of this is the removal of potential circular links in 
the Universal Knowledge Store Module. These are mirrored by 
corresponding changes in SetupAfterLoad that restore the content 
to its original state. 

All public properties are automatically saved and restored to the 
Network file. If, for some reason, you need a public property that you 
don’t want to store, precede its declaration with [XmlIgnore]. 

Lastly, there is a vast array of services that are useful for 
manipulating neurons and accessing other Modules. Principal 
among these are GetNeuron and GetNeuronAt, which can return a 
neuron object for any neuron in the network. Given the neuron, you 
can query or set its properties, add or delete synapses, etc. 

At the time of this writing, Modules are executed sequentially and 
the order is defined by the placement of the Module’s upper left 
corner in the neuron array, top-to-bottom, then left-to-right (in 
numerical order of ID). In general, this makes little difference 
because a module which doesn’t process on one cycle will be able to 
on the next.  

Modules may expose public methods which are accessible to 
other modules. Generally, Modules should communicate by setting 
neuron values rather than by method calls because it makes the 
Modules more generally useful. However, there are instances where 
the use of neurons would be tedious and direct method calls are 
more convenient. An example of this is described in the Universal 
Knowledge Store chapter. 
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Are you Cheating? The Limits of Plausibility 

Philosophically, intelligence might take many forms and there may 
be intelligences that work differently from human intelligence. At 
this point, however, human intelligence is the only general 
intelligence we know about, which is why the Brain Simulator uses 
it as a model.  

On the other hand, there are good reasons to ignore biological 
plausibility on occasion, but when you do, it’s useful to know how far 
you’ve strayed from the “true path” and why. As an example, we 
know that your brain is capable of estimating distance given the 
differences in images received by your two eyes. We could speculate 
on how this might be accomplished in neurons or we can write a few 
lines of trigonometry code to accomplish the same task. This is done 
in the Module2DVision file even though it is implausible that any 
portion of your brain works with the use of floating-point 
trigonometric functions. 

It’s fine to develop AGI in any form that works. At the same time, 
it’s a good idea to notice how your AGI differs from human AGI so 
you can highlight areas of additional AI risk which should be 
addressed. 
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Chapter 9: 
The BasicNeurons Network  

This chapter is a sample of the “Notes” included with every library 
network. Notes can contain any desired text but typically include: 
• Purpose—what’s the point of this network. 
• Things to Try—ideas about things you might learn from this 

network. 
• Current State of Development—known bugs and suggested 

future capabilities. 

 
When any Network is opened, a “Network Notes” section is displayed if it has 
one. It includes sections on the Purpose of the Network, Things to Try, and the 
Current State of Development of the Network. When you build your own 
Networks, you can add and edit notes as well. 

Purpose: 

This network illustrates some capabilities of the basic Integrate and 
Fire (IF) and Leaky Integrate and Fire (LIF) neuron models.  
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The neurons in cluster #1 are connected, one-to-the-next, by 
synapses of weight 1.0, so the firing of one causes firing of the next.  

 
By connecting one neuron to the next with a synapse of weight 1.0, each firing 
neuron will cause the next to fire in sequence and firing neurons will chase each 
other around the loop. The center-right neuron has a synapse in front of it 
because it has “Show Synapses” selected. 

Cluster #2: the left-most is set to always fire. It is also connected 
to the center neuron with a synapse of weight 0.25. You can see the 
color change as the center neuron accumulates charge. When it 
reaches its threshold, it will fire and cause the right-most neuron to 
fire once every fourth cycle. 

 
This tiny circuit shows how neurons spontaneously act as frequency dividers. Of 
the three neurons, the left-most fires on every cycle while the center fires at a 
rate dependent on the weight of the incoming synapse. 

   Below that in cluster #3 is the simplest possible memory circuit. 
Neuron FF is either firing all the time or it is not and so represents a 
single bit of storage. The neuron is connected to itself with a synapse 
of weight 1.0 so whenever it fire it will contribute enough charge to 
itself so it will fire again. The R (Reset) neuron is connected to FF 
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with a synapse weight of -1.0 so firing R will cause FF to stop firing. 
S (Set) is connected with a synapse of weight 1.0 so firing it will 
cause FF to start firing continuously. This works because the axon 
delay is equal to the refractory period; both are 0 in this case. If the 
refractory period were longer, the signal out from FF would arrive 
during its refractory period and would be ignored so this circuit 
would be a bit more complex. 

 
The simplest bit of memory is also called a Set-Reset Flipflop. It has two states, 
in this case, firing or not firing, and so can store a single bit of information. 

   Cluster #4 shows basic digital logic functions of AND, OR, XOR, 
and NAND implemented in neurons using a logic model of always-
firing is "1" and never firing is "0". This is an important 
demonstration because it proves that neurons form a functionally 
complete set and so could be used to implement ANY logic circuit. A 
CPU could be constructed from neurons just as a brain could be 
constructed from transistors. 

   To the right in Cluster #5 is a similar set of logic circuits using a 
logic family where "1" is represented by ANY SPIKE and "0" is 
represented by no spike at all. This uses much less energy because 
continuous firing is not needed but outputs are only valid after the 
READ neuron spikes. 
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These two circuits show how digital logic can be implemented in neurons. In the 
left-most set, the basic logic elements are created with a logic 1 defined as firing 
on every cycle. A more plausible system on the right only requires neuron firing 
when the logic values change—it consumes much less energy for similar 
performance. 

   Cluster #6 should a simple circuit to count the number of firing 
neurons in a group. The right-hand column indicates the number of 
neurons (R0-R3) which are firing. 

   Cluster #7 shows another mechanism which can be used for 
short-term memory. In this case, the neuron’s internal charge can 
also store a bit of memory. In the center column of neurons, if the 
charge is greater than 0.1, this represents a 1. If the charge is lower, 
it represents a 0. The output is only valid after the Read neuron fires. 
This memory is fast but fades with the leakage of the neurons and so 
must be refreshed. If the memory is not read, it will be lost. Other 
memory mechanisms are described in the HebbianSynapses 
network. 
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The Neurons, Set0-3 are the data inputs to this four-bit memory. Each 
contributes a 0.9 charge to the neurons in the center column which is not enough 
to cause spiking. When the Read neuron spikes, it contributes 0.9 and any 
neuron with a bit stored in it will fire the corresponding Out neuron. 

   Clusters #8 and #9 are two circuits for detecting the firing rate 
of the input. In each group, the left two neurons are connected by a 
synapse which generates a defined spiking rate. Cluster #8 detects 
the frequency while cluster #9 adds the ability so that a single spike 
is output when a frequency is detected but there is no spike output 
otherwise. The multiple single-spike outputs are OR'ed together in 
the "Changed" output. It will spike whenever the input frequency 
changes. 
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These two circuits convert from a rate-based encoded signal to parallel signals. 
The right-hand version includes memory so it can detect if the incoming firing 
frequency has changed. 

Things to Try: 

In cluster #2, right click the synapses from In to C and change its 
weight. Note how you can change the firing frequency of Out.   

In cluster #3, click the "S" and "R" neurons to change the firing 
state of the FF flip-flop. This is a fast memory mechanism with this 
type of neuron model as it stores a bit in a single neuron. This is also 
a good opportunity to demonstrate the history window by selecting 
all three neurons, right-clicking, and selecting the “Record firing 
history” checkbox.  

In Cluster #4, click the "A" and "B" neurons to exercise various 
digital logic functions [This will make sense to people with EE and 
CS experience]. A neuron with a synapse to itself will fire 
continuously after it is clicked and will stop firing if clicked again.  
Note that a "1" neuron which always fires is necessary to create an 
inverter (for NAND).  

Repeat with cluster #5, the "1"=ANY SPIKE model. Once you click 
"A" and/or "B", you need to click "READ" for the logic to perform. 

In cluster #6, select different combinations of "R" neurons and 
notice that the appropriate output neuron always indicates the 
number of neurons which are firing. The right-most column 
eliminates noise in the output with additional suppressing synapses 
but is not strictly necessary. 
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To use the "Short-Term Memory" circuit in cluster #7, click one 
or more "SET" neurons to store information. Click "Read” and 
observe that the memory content is set to the "Out" neurons. To 
store a new value, click "Clear" to clear all memory cells. Because the 
bits are stored in the internal charge of the LIF neurons, it decays 
over time and needs to be refreshed periodically with a "READ"--just 
like DRAM. 

You can build your own network: 

Right-click any neuron or synapse to see its state and edit it. You can 
use the checkbox to add more neurons to the firing history window.  
In that window, you can drag waveform labels up and down in the 
history window to reorder the waveforms. You can change the 
model used to calculate a neuron's function. 

You can drag the mouse cursor from one neuron to another to 
create a new synapse. Then right-click the synapse to set its weight. 
New synapses will default to the characteristics of the most-
recently-selected synapse. 

You can zoom and pan the neuron display by holding the Shift key 
and using the mouse wheel or dragging the display. You can also use 
the scrollbars or the buttons below the main menu bar. Notice that 
this network is 30x15 or 450 neurons but the simulator works with 
millions. 

When the mouse cursor is between neurons it changes to a cross 
and you can then drag to select a group of neurons. You can then 
move to a clear neuron area, right-click a neuron and Move Here to 
move the neurons. Other standard clipboard commands also work. 
If you change the model of a neuron within a selected area, all 
neurons in the selection can be changed.  Holding the Ctl key while 
selecting lets you create a selection with multiple rectangles. 

Current State of Development: 

This network represents the basic neuron models, engine operation, 
and user interface and is reasonably robust. Please report any bugs 
you encounter. 
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Chapter 10 
The HebbianSynapses 

Network 
 

Purpose: 

This Network demonstrates the use of three different synapse 
models with spike-timing-dependent plasticity which is referred to 
generically as Hebbian learning. This involves synapses whose 
weight can be changed by the firing timing of the neurons they 
connect. The change in synapse weights is generally accepted as the 
principal mechanism which underlies learning. 

There are a number of parameters which can contribute to 
synapses plasticity:  

• The current weight of the synapse. 
• The relative spike-timing of the neurons it connects. 
• The range of weights the synapse can take on, for 

example [0,1] or [-1,1]. 
• The rate of variation of the synapse weight. 
• Whether the variation is linear or follows some other 

algorithm. 

The algorithm for weight variation could be any combination of 
these factors. In biological synapses the specific algorithm is not 
known and the experimental variation is large. Accordingly, the 
Brain Simulator II supports any number of experimental models for 
synapse variation. The ones currently implemented are: 

• Fixed—the weight cannot be modified by the Neuron 
Engine. 

• Binary—the weight is either 0 or 1 and changes in a single 
engine cycle. 
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• Hebbian1—the weight range is [0,1] and varies via a 
lookup table so that intermediate weights are stable 
when connecting two neurons. For example, a synapse 
with weight 0.25 will cause the target neuron to fire every 
fourth cycle so the amount of increase added to the 
weight when the target fires is 4 times the amount of 
decrease. 

• Hebbian2—the weight range is [-1,1] and the weight 
varies so that weights will effect pattern recognition. 
When there are four incoming synapses, the maximum 
weight is .25 so that all 4 must fire to cause the target to 
fire. The weight follows a tanh function so that it is most 
stable at its maximum and minimum values. 

The Complexity of Synapse Plasticity: 

One of the points of this network is to show the complexity of 
building a system with variable synapses. In the BasicNeurons 
network, all the synapse weights were fixed and the function of the 
various clusters was completely predictable. In the cluster in this 
network, if there were no fixed-weight synapses, the clusters would 
quickly degrade and not function.  

It’s easy to say that “Neurons which fire together, wire together.” 
But when thinking about biologically plausible neuron and synapse 
models, this is easier said than done. The binary synapse model is 
the simplest possible implementation and in cluster #1, it takes 
multiple control neurons and fixed synapses to control the weights 
of a few synapses. With the more complex models, it is obvious that 
it is impossible to precisely control synapse weights. Further, if you 
could set them to precise weights, they would not maintain those 
weights and there is no way (plausibly) to determine with the 
weights are. 

That said, variable synapses can be an extremely powerful tool 
and clusters #3 and #4 show how they can be harnessed to 
recognize patterns and store structured knowledge. 

Things to try: 

There are four demonstrations in this Network demonstrating the 
three variable synapse models. 
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In cluster #1, single binary synapses connect inputs to outputs. 
By clicking “Enable,” the synapse weight is set to 1 and the signal 
passes through. By clicking “Disable,” the synapse weight is set to 0 
and the signals are blocked. This shows some of the difficulties of 
using variable synapses. To set the synapse weight to 1, both the 
input and output neurons must fire. To set the weight to 0, just the 
output must fire. In principle, the Enable neuron fires both neurons 
simultaneously, the Disable neuron fires just the target while 
inhibiting the source. D0 and D1 are needed for timing. The Out1 and 
Out2 are used to suppress spurious output spikes which would 
otherwise occur with Enable and Disable actions because both 
require firing the target neuron in order to function. 

 
This memory stores the value as the weight of a synapse which is either 1 or 
zero. The variable synapses are noticeable in the bottom center because their 
arrowheads are wider. When the weight is 1, the signals from In1 and In2 are 
transmitted to the outputs, when the synapse weights are zero, the signals are 
blocked. Four neurons are needed to control the timing to set the weights of the 
two synapses. 

Cluster #2 demonstrates a single Hebbian1-model neuron. 
Because its weight varies between 0 and 1, it will act as a frequency 
divider depending on its current weight. By pressing and holding 
“Enhance”, the target neuron will be fired and the weight will slowly 
increase. The Suppress neuron prevents the target neuron from 
firing and thus the weight will decrease. If you show the recorded 
firing history of the I, O, Enhance, and Suppress neurons, you can see 
how the frequency of the output spiking can be controlled by the 
Enhance and Suppress neurons. 
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Again, the variable synapse is in the bottom center. In this case, the Enhance 
and Suppress neurons force or block the firing of the O neuron and will increase 
or decrease the weight of the synapse. In this model, the weight will remain near 
whatever value it is set to. 

Cluster #3 is a circuit which can recognize patterns of four input 
neurons. All of the “meat” of this network is in the diagonal synapses 
between the O, -O and P columns. The inputs (i0-i3) are latched by 
M0-M3 using the short-term memory circuit from the BasicNeurons 
network. This way, you can click them in any order and the input 
timing is not critical.  

When you press “Start,” the pattern is spiked on O0-O3 and its 
inverse is spiked on -O0- -O4. By using inverses, this circuit provides 
equal value to single-bit errors whether it is a 0 which should be a 1 
or a 1 which should be a zero. The pattern is presented to the array 
of Hebbian2 synapses and the output pattern which most closely 
matched the stored pattern will fire first.  

The patterns which are stored in the network as saved are: 
P0:0000 P1:1111 P2:1100 P3:0011 P4:1010. When a match is found, 
the “Match” neuron will fire and cause the cycle to stop. If no match 
is found “No Match” will fire. The closer the input pattern is to 
exactly matching the stored pattern, the faster it will be recognized. 

To store new information, start by clearing all the stored 
information by selecting all the O neurons, right-clicking, and 
clicking “Reset Hebbian Weights.” You can store new patterns by 
firing “Clear”, then inputting your pattern, and then firing one of S0-
S4 to store your pattern in the synapses targeting P0-P4 
respectively. This will cause repeated firings of the P neuron just 
after the O neurons and will cause the synapses to adjust their 
weights to match the pattern. After a pattern is learned, you can 
repeat the original process of clicking a pattern into the i0-i3 
neurons, pressing Start, and seeing the pattern recognized (or not) 
on a P0-4 neuron. If the data is not cleared before storing a new 
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pattern, it may take many store cycles in order to store a new 
pattern. Each of the “L” neurons fires a burst which adjusts the 
synapses. 

 
This looks a lot more complex than it is. The four inputs, i0-3 represent a pattern 
which is recognized by one of the neurons P0-4. The L and S columns fire bursts 
which set the variable synapse  weights in the center. 

Cluster #4 shows how structured knowledge can be stored in 
plastic synapses, This closely follows the explanation given in 
Chapter 11 with the simplest example of a three node graph. The 
example is to consider that if you know that “red is a color” and “blue 
is a color” then you can use the structure to answer the “what are 
colors” and the “red and blue” as an answer.  
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This circuit shows a neural mechanism by which knowledge can be stored in 
neurons. A more advanced version of this circuit is shown in the NeuralGraph 
Network and is then expanded in the Universal Knowledge Store. Information is 
stored in the diagonal Hebbian synapse weights in the bottom center. 

In the cluster, there are three nodes and the relationships Parent, 
Child, and This. Once data is loaded, if you fire Node1 followed by 
Parent, the output will fire the parent nodes of Node1. Likewise for 
Child. The process of getting information into the network requires 
a few steps. As above, start by resetting the Hebbian synapse 
weights. To say that Mode1 is a parent of Node2: 

• First, fire Node1.  
• Fire This to transfer it to the desired output.  
• Fire Reset then Node2 to set the new input.  
• Fire the Learn neuron to put the network in a learning 

mode.  
• Finally, repeatedly fire Parent to strengthen the 

appropriate Hebbian synapse.  



The Universal Knowledge Store   129 
 
Current state of development: 

This is early-stage development and many other capabilities are 
being experimented with. Of particular interest is how the synapse 
weights might adjust to compensate for errors and which pattern 
neuron should be selected to store a new pattern. Methods have 
been developed which detect a no-match pattern and store it in the 
least-recently-accessed pattern. As an alternative, it can also be 
stored in the least-often-used pattern. Further, there are 
experiments underway which reset Hebbian2 synapses toward a 
zero weight if the target fires but no input has fired for a long time. 
In this way, memories will gradually weaken over time. 
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Chapter 11: 
The Universal Knowledge 

Store 
This chapter describes how knowledge might be represented in 
neurons and then in what I have named the Universal Knowledge 
Store (UKS). It starts with the development of knowledge in neurons 
and synapses so you can get an idea of the complexity needed to 
store the variety of knowledge all of us encounter. Because of this 
complexity, the development approach was migrated from neurons 
to Modules for the UKS’s higher-level language approach. 

After describing the capabilities of the UKS, two applications 
demonstrate how these can be used. One demonstrates how Sallie 
can correlate words she hears with objects she sees to learn how 
words can describe objects. The other demonstrates how traversing 
a simple maze is representative of a huge area of reinforcement 
learning where, given some previous experience, you can choose a 
course of action in any similar situation. 

More importantly, this chapter shows how the Brain Simulator 
can merge the abilities of a neural simulator with the power of the 
computer. Obviously, all the functionality of your brain is embedded 
in neurons and synapses but the computer, with its different 
architecture and its own strengths, can be harnessed to great 
advantage in the creation of Artificial General Intelligence. 

A Brief Introduction to Knowledge in Neurons 

All knowledge can be represented. This is a separate concept from 
the ideas that knowledge can be learned and can be useful, which I’ll 
touch on later. The idea being that representing knowledge is a 
target while learning is a process toward reaching that target. As of 
Brain Simulator v1.0, the development of the knowledge 
representation has progressed further than the learning process.  
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The UKS is an approach for Knowledge Representation which 
represents a different approach from many neural network 
proponents who create useful networks without knowing the 
internal structure of the information. The advantage of the UKS 
approach is that once you know how some kinds of knowledge are 
represented in the brain, you can generalize the solution to any kind 
of knowledge. 

The Information of Knowledge 

Let’s start with the idea of recognizing a face—or at least 
representing the information needed to recognize a face. Every face 
is recognizable because it has properties, like having eyes and a 
nose, and each of those properties can have properties, like eyes can 
be blue or brown (or some other color). The nose might have 
properties relating to size and shape. 
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This diagram represents the most basic ideas of how you might represent the 
information needed to recognize a face.  

From the diagram, you can know that Bill has blue eyes and Suzy 
has brown eyes. With considerable extension, you might store 
enough information to differentiate any human face from any other. 
You might jump to the conclusion that the circles represent neurons 
while the arrows represent synapses—but it’s too soon to do that as 
I’ll explain in a moment. 

The facial recognition experts tell us that about 50 properties of 
different values are sufficient to uniquely define a face and that an 
average person can recognize 5,000 different faces. You can see that 
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any real-world situation will be represented by a graph far too big 
to show in a diagram. So we simply accept that if we can use 
computers (or neurons) to implement a structure for knowledge 
representation, we can implement a larger structure with any 
number of faces and their characteristics, limited only by processing 
speed and memory size.  

Let’s make our knowledge a bit more abstract with a basic 
example. Consider that all you know is “Blue is a color” and “Brown 
is a color”. Now, you can answer the questions: “What is blue?” (a 
color), “What is brown?” (a color), and “What are colors?” (blue and 
brown). 

Simple, right? Well, to do this in neurons is not so simple and I’ll 
build up a network that does just this. Let’s generalize the question 
just a bit by recognizing that “blue”, “brown”, and “color” have a 
meaning to you but at some level are just words or ideas with 
relationships to one another. Within your brain, these are just 
spiking neurons with some sort of synaptic connections. In 
mathematics, you might call this a “graph” which is a collection of 
“nodes” connected by “edges”. To represent this simple knowledge, 
you might create a graph with three nodes and some edges linking 
them which might look like this.  

 
Illustrating how certain types of knowledge can be represented in a “graph” of 
“nodes” connected by “edges.” 

You might say that Color is a parent node of Brown and Blue and 
that Brown and Blue are Child nodes of Color. An entire field of 



The Universal Knowledge Store   135 
 
“Knowledge Representation” has grown around how you might 
represent any kind of knowledge and various forms of graphs. A 
node might have any number of edges, so blue objects like Bill’s eyes 
can be represented by nodes with edges linking to the blue node. 

To see this working on the real-world problem of face 
recognition, here’s how you might store the information for a face. 
You might have a parent node of Face with children Face1 (Bill’s 
face) and Face2 (Suzy’s). Every Face has a nose, so you have a Nose 
parent with noses 1-to-n. Each of the noses has edges to properties 
like Big or Little or Wide or Thin (which could be children of a more 
general Size node). Now, I can ask, “What size is Bill’s nose?” and 
access the properties Little and Thin, assuming that there are other 
property nodes that reference Bill as PersonX which references 
Face1 and the name, Bill.  

Implementing a Graph in Neurons 

To implement the simple three-node color graph in neurons, let’s 
start by assigning neurons to represent each of the three nodes. To 
answer the first two questions, you need a synapse that connects 
Blue to Color and another which connects Brown to Color. Now if the 
Blue neuron fires (because perhaps you saw something blue or 
heard the word “blue”), the Color neuron will subsequently fire and 
you’ll know that Blue is a Color. Likewise, for Brown.  

 
If the nodes, “Blue,” “Brown,” and “Color” were just single neurons, firing either 
Blue or Brown will cause Color to fire but there is no way to connect Color so it 
fires Blue and Brown. 

Now to answer the third question. With just a synapse from Blue 
to Color, there is no way to fire Color and get Blue to fire. If you were 
to add synapses from Color to both Blue and Brown, the trouble 
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begins. If Color fires, it causes both Blue and Brown to fire which, in 
turn, cause Color to fire again which causes… so you end up with a 
situation that for any input, all neurons fire indefinitely. So, we need 
to add a neuron so that Color will only fire if you want to know the 
parent of Blue or Brown and another which will cause Blue and 
Brown to fire only if you’ve asked for the Children of Color. More 
generally, by more neurons to each node, we can solve this problem. 

 
By adding neurons to every node, you can build a complete structure so that 
each node can have parents and children. The center neurons will only fire if two 
or more input neurons fire. Now, if Blue AND Parent fire, Color will fire. If Brown 
AND Parent fire, Color will fire. If Color AND Child fire, both Blue and Brown will 
fire. Imagining that Color also has a Parent and Blue and Brown also have 
Children begins to show the complexity of solving the most basic knowledge 
problems in neurons. 

To extend the problem just a little, we have a neuron that fires 
when you see blue or hear the word, but it must be separate from 
the neuron which fires for you to say the word blue, otherwise, every 
time you saw blue (or heard the word), you’d also say it. So each 
node also needs more neurons which determine if you’re receiving 
input or creating output for that particular node. If every node can 
have a parent and children, and an input and output, each node 
requires four neurons and you can see the complexity building up. 

Then you need another set of neurons that transfer the input to 
the output so that if you do see blue, you can say, “Blue” if you want 
to. I call it the “This” relationship because it answers the question, 
“What is this?” Likewise, we need a relationship that transfers the 
output to the input. I call this “Recursion” (labeled “Recur”) because 
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it allows you to ask, “What is the parent of this node?” followed by 
“What is the parent of the parent?” You ask the first question, then 
fire the Recur neuron to transfer the output of the first question to 
be the input of the second, and then ask the same question again. 

In the simulator, to expand the capabilities, I added short-term 
memory to the input and output neurons (so each is actually two 
neurons). That way, the relative timing of various inputs or outputs 
is not critical. 

Now, we have a basic structure with three nodes represented by 
eight neurons each. Each node is represented by a number of 
neurons so it can selectively have a number of different 
relationships. In this case, the four relationships are Parent, Child, 
This, and Recur. All the actual information is stored in the weights of 
Hebbian synapses. Because any node might potentially relate to any 
other, there must initially be a huge number of synapses even 
though only a few may be used. 
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Here’s a three-node graph as described if Node1 is Color, Node2 is Blue, and 
Node3 is Brown. The control neurons are across the top and any number of 
neuron rows (additional nodes) could be added. The actual data of the structure 
is the diagonal Hebbian synapses between the nodes. In this case, Node1 is a 
parent of Nodes 2 and 3 and, conversely, Node1 has the children, Nodes 2 and 
3. 

Let’s assume that the control signals originate somewhere 
outside the structure (perhaps the hippocampus) and focus on what 
this network does. If you fire the Node1 neuron, the fact that it fired 
is stored in short-term memory (below Reset). To get the children of 
Node1, fire Child—and voila! The child node(s) of Node1 will fire on 
the outputs. Likewise, you can fire Parent to get the parents of Node1 
but there are none. 

Note that, as described, the network doesn’t automatically add a 
reverse relationship. When we add that Color is a parent of Blue, the 
connection that lets Color’s children include Blue must be done in a 
separate operation—recall I haven’t focused on the learning process 
in this discussion. 
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Any number of additional relationships can be added in the form 
of the parent and child relationship; each one just takes an 
additional column in the structure. As I built applications, I found 
two more that were necessary which I named “References” and 
“ReferencedBy” which can be used to represent any other kind of 
properties that a node might possess. In the same way that a child 
relationship is the reverse of a parent relationship, References and 
ReferencedBy are also inverses.  

With this structure and enough neurons and synapses, you could 
represent all the information of 5,000 faces, each with 50 unique 
properties. Because of the inverse relationships, you not only can 
ask for a description of Bill’s face, but you could also ask, “Who has 
blue eyes AND a narrow nose?” 

Sequential Information 

So far, I have considered only objects which have “simultaneous” 
properties. When you see a face, all its attributes like eye color and 
nose shape are accessible simultaneously and it doesn’t matter if you 
consider nose size and shape before or after eye size or color. But 
now consider language. Language requires sequential information 
because the specific order of phonemes or syllables defines words 
and the specific order of words defines meaning. If we think of a 
word as having properties that define how it is pronounced, these 
attributes must also be “ordered”—it does matter that one syllable 
comes before or after the other.  

To represent this, at the very least, each node needs a 
relationship to indicate which node comes next in the sequence. In 
neurons, this requires at least yet another relationship column. The 
next node after node1 is node2.  

As a programmer, I would immediately assume that because 
ordered information requires a “Next” relationship, it implies a 
back-reference to the previous item in the sequence, a “Previous” 
relationship, in the same way that Parent implies Child. But you need 
only consider how difficult it is to recite your phone number 
backwards, or the alphabet, or any sentence, to convince yourself 
that your brain only stores forward sequential references (next-
node) but not backward references (previous-node). On the other 
hand, if you hear, “…had a little lamb,” you know it’s Mary, so there 
must also be a relationship connecting the multiple nodes of a 
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sequence back to the first node. Your brain could use this reference 
to get to the beginning of the sequence and then process it forward 
to any desired point. 

So in development, I added a “Next” relationship and a “First” 
relationship, which are used to allow any node in the graph to be 
part of a sequence. 

Biological Plausibility 

With this structure (and three nodes), I can represent the 
information that Blue and Brown are Colors and I can list all the 
colors the structure contains. By extension, I can add rows of 
neurons to encompass any number of nodes. 

Is this biologically plausible? Yes and no. 
Because you can answer simple questions about colors, a parent-

child structure with relationships must exist. Because you can 
remember for the long term, these relationships must be stored in 
synapse weights. Because you can remember sequential 
information, some sort of structure must exist for that too. But we 
don’t find orderly physical structures like these in the brain so we 
must assume that the neurons which perform these functions are 
interspersed with neurons doing other things as well.  

That your brain implements these structures exactly as I’ve 
described is unlikely for a number of reasons. Here are some 
important ones: 

• Redundancy—as I’ve described the implementation, the 
failure of any single neuron or synapse can cause a loss of 
memory. Instead, nodes in the brain likely consist of 
perhaps a hundred neurons with redundant connections. 

• Physical structure—the structure is very orderly and 
precise and no equivalent has been discovered in the 
brain. 

• Multiple graphs—I’ve described a single graph but it is 
likely that various graphs in the brain contain different 
kinds of information—like visual and audible—and we 
do know that language and visual processing occur in 
different areas of the brain. 

• Graph Size—the control neurons must connect to every 
node in the graph, further limiting graph size.  
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• Storage and retrieval—Although possible with additional 
neurons, I focused on how information is represented, 
not how it is stored or retrieved, a key component of the 
brain. 

The objection of, “This is just too complex to be plausible,” is not 
valid. Consider that a horse can walk, see, and avoid obstacles within 
hours of birth. The neural complexity of those functions (which must 
be “preprogrammed” by DNA) makes this graph idea seem simple in 
comparison. The key is that with a node structure consisting of a 
number of neurons and synapses, the structure can be encoded in 
our DNA and then repeated many millions of times as the brain 
develops. 

I hope you can see that although the basic idea is simple, a 
knowledge graph can be built of nodes and edges (or neurons and 
synapses). With sufficient nodes, a graph can represent information 
of immense complexity.  

The NeuralGraph  

Whether the specific structures I’ve described and implemented in 
the Brain Simulator exist in your brain is not known but obviously, 
some equivalent structure must exist because you can answer the 
types of questions I gave in the examples. Within the BasicNeurons 
network, there is a small demonstration graph that was built by 
hand.  
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The NeuralGraph Network implements the functionality described and requires 
16 neurons per node. It includes not only Parent, Child, and Reference (called 
“Attrib” here) relationships but the ability to search sequences of words so you 
can input “Mary had” and get back the firing sequence “a little lamb.” The 
“Recur” relationship (recursion) allows the system to take the output of one 
search and use it as the input for another. The Module puts a label on each node 
so you can see what the content is. 

The next step in development was the creation of the Module, 
ModuleGraph, which is included in the NeuralGraph sample 
network. It includes a method, AddNode, which can add a new node 
to the graph and add all the synapses to represent information 
within the graph. It also includes demonstration methods that allow 
searching by spoken input and creating spoken responses. 

As implemented in the Brain Simulator, each node requires 16 
neurons. Although it is no longer supported, the NeuralGraph can 
provide insight into the plausibility of complex graph structures in 
neurons. 
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Enter the Universal Knowledge Store (UKS)  

The system described above was implemented with a Module 
(“ModuleGraph”) that can create as many nodes as desired and 
automatically arrange all the neurons and synapses needed to 
represent it. Within the Brain Simulator’s UI, you can watch 
individual neurons fire as information is stored in, or retrieved from, 
the structure. This is great for a few dozen nodes but becomes 
unwieldy for larger graphs. So the next development replaced the 
neuron/synapse computation with a structured program within a 
Module to make it easier to experiment with various ideas and 
structures. 

Here were my objectives for the Universal Knowledge Store: 
1. Biological plausibility because it is generally equivalent to 

the NeuralGraph, implemented in neurons. 
2. To be able to store any kind of knowledge and relationships. 
3. Require little pre-programming…with both the structure 

and content being learned. 

Biological plausibility is not an absolute necessity for intelligence 
but, as the human brain is the only working intelligence we know of, 
it seems like a logical place to start. 

The Universal Knowledge Store implements a knowledge graph 
of unlimited potential and complexity. It represents information as 
a collection of nodes connected by edges. The Module contains only 
two useful object types, a “Thing” and a “Link” which are concrete 
implementations of a theoretical node and edge. 

The Thing represents anything (a word, a physical object, a color, 
an action, etc.), and a “Link” connects one Thing to another Thing. 
While I like to think of a Thing as being analogous to a neuron and a 
Link as analogous to a synapse, this is a very loose analogy, as I’ve 
shown that a single Thing might require a hundred neurons in your 
brain.  

The Link 

First, because it’s simpler, we’ll start with the definition of a Link. 
We can say that a Link is “owned” by a Thing and targets another 
Thing in the same way we might say that a Synapse is owned by one 
neuron and connects to another. The other end of the Link is the 
Target Thing.  



144   Brain Simulator II: The Guide for Creating AGI 
 

You can see that a Link is also analogous to a synapse in that it 
connects in a single direction and has a weight or strength. A Link 
may, likewise, include a weight that can represent the confidence or 
importance of the Link. The weight of a Link cannot represent any 
information such as the intensity of a color, as has been explained 
previously.  

In practice, most Links don’t require a weight at all. To represent 
that “Blue is a color”, or any other known fact, the weight would 
always be 1. Blue is either a color or it’s not (or perhaps you’re not 
sure, yet). There’s a bit more to a link which I’ll cover later when I 
describe learning. 

As a software structure, a Link is just a reference (C#) or a pointer 
(C++) to a Thing along with a floating-point weight value. 

The Thing 

Now for the Thing. First off, each Thing has lists of Links to other 
Things. In theory, a single list would suffice but for programming 
convenience, the Thing has specific lists for “Parents”, “Children”, 
“References”, and “ReferencedBy” Links (more about these in a 
moment). 

In theory, a Thing has no content. A Thing’s meaning is inferred 
entirely from the other Things it links to. If you have a Thing with 
links to “red” and “square”, you know it represents a physical object. 
If it also links to a Thing representing a position, you know it 
represents a specific physical object. As you’ll see, I’ve taken liberties 
with this constraint as well. 

For convenience in creating a Tree-like structure of Things, there 
is the ability to create parent-child relationships as described 
earlier. Each Thing has a list of parents and a list of children. By using 
a List structure, each Thing can have any number of parents and any 
number of children. This way, we can represent unlimited “is-a” 
relationships. 

The software method which adds a parent Link to a Thing, also 
automatically adds the child Link to the parent Thing. That way if 
you tell the knowledge store that “Red is a color”, which adds color 
as a parent of red, the UKS is immediately able to answer the “What 
are some colors?” question and get red among the results. 
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A portion of the knowledge store is shown. From the parent-child 
links, we could say that circle is a shape and shape is a Visual Thing. 
Red and Blue are Colors and Color is also a Visual Thing. 

 

 
From this representation of partial UKS content, you’ll know that at Location1, 
there is an object which is a Blue Square, at Location2, there is another, at 
Location3 there is a Red Circle, and at Location4, there is a Blue Circle. 

Before continuing with the structure of a Thing, understand that 
The Universal Knowledge Store, itself, is just a list of Things; Things 
that contain links to other Things within the Knowledge Store. That 
means there is no limit to the number of independent UKSs you can 
have and any subset of a UKS can be treated as a UKS in its own right. 

The parent-child relationships of the UKS do not necessarily 
represent a formal tree structure because Things may have multiple 
parent Things, there is no exclusion of circular references, and not 
all the Things in the Knowledge Store must be interconnected—that 
is, there could be multiple disconnected trees within a single UKS. 

These next two properties in each Thing are great programming 
conveniences but are a departure from biological plausibility.  

Labels 

Each Thing has an optional label, so when you look at debug 
information about the content of the knowledge store, it can make 
sense. Of course, biological neurons don’t have labels, which is one 
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reason it’s so difficult to decode what’s going on inside your brain. 
Without Labels, Things are just lists of Links and it’s a tough task to 
trace the Links to figure out what a Thing is. So, with a Thing labeled 
“Physical Object” with children which are all physical objects, it’s 
easy to say with certainty that a specific Thing with that parent is a 
physical object too.  

A single line of code can find any Thing based on its label. 
 
Thing t = UKS.Labelled(“Physical Object”);  

 
So you can get a list of the children of a Thing with: 
 

List<Thing> physObjs = UKS.Labelled(“Physical Object”).children()  

 
and immediately get a list of all the physical objects in the UKS. 

All the child Things typically have some short labels with a sequence 
number (like Object1, 2, 3) so when you examine such a Thing, you 
immediately know it’s a physical object and roughly when it was 
added to the UKS without having to trace any Links.   

Values  

As I mentioned earlier, there are deviations from the idea that 
nodes contain no information. There is no plausible way to add text 
or a precise numeric value to a node built from neurons. The mental 
exercise of considering a graph where none of the nodes has any 
content will give you a better insight into how your brain must work. 

In a computer, though, to know how to spell a word, we simply 
store a text string. In your brain, since neurons obviously don’t 
support text strings, there must be an ordered list of links to other 
nodes which represent individual letters. These Letter nodes must 
have links to other nodes which define the strokes you’d need to 
write them, the utterance you need to speak when spelling a word 
out loud, and a definition of patterns of visual input so you can read 
them. You can see that the complexity needed to store something as 
simple as a word in a biologically plausible structure can be 
daunting. 

In the UKS, each Thing can have a “Value” which can be any data 
type—a number, a text string, a vector, a color, etc. The Value has 
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been used to store a data item needed to make the program run as a 
shortcut to speed development. For example, to store color 
information, rather than deciding today how the brain might 
represent color information, the UKS simply stores the raw RGB 
levels into the Value and the question of the internal representation 
of color is deferred to a future development iteration. There are 
several ways that color could be stored in neurons but deciding 
which way to do it is not as important as being able to use color in 
other processing.  

The key for these two properties, the label, and the value, is that 
as UKS applications are developed which rely on them, we know 
we’re cutting corners on the biological plausibility front. This may 
mean that we may need to re-think the algorithm down the road or 
that conversely, we’ve implemented a mechanism that can give the 
Brain Simulator an efficiency edge over its biological counterpart. 

References 

In addition to Parents and Children, each Thing has a list of Links 
named “References” so a Thing can reference any number of 
property Things. A physical object may reference Things 
representing color, texture, shape, size, location, etc. but it also may 
reference Things which are words and phrases that describe the 
object verbally. Like parent-child, References are mirrored with the 
ReferencedBy list. The UKS can easily determine not only the color 
of a Thing, by searching the reference list for a child of Color Thing, 
but also what other Things have the same color by subsequently 
following that Color’s ReferencedBy list. I should reiterate that this 
type of back-reference is a great convenience for software 
development but cannot be implemented with the biological 
synapses of a single neuron. It requires multiple neurons and 
multiple synapses for a brain to function equivalently. 

In yet another departure from the biological, References lists may 
be “unordered” or “ordered”. As an example, the attributes of a 
physical object all exist simultaneously so are unordered. On the 
other hand, the words of a phrase must occur in a particular order 
or the meaning may be lost. The shortcut of an ordered list also 
requires a “currentReference” variable which keeps track of where 
processing is in the list of ordered references. To speak a phrase, 
currentReference is initially set to the first word reference in the 
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phrase and is advanced to the next as needed so the word sequence 
can be spoken at a reasonable rate. To speak each word, each word 
Thing’s currentReference keeps track of the phoneme which has just 
been spoken. 

For bookkeeping purposes, each Thing also has a “use count” 
which tracks how often a Thing has been accessed. Also, each Link 
keeps track of “hits” and “misses”. These can be used together to 
determine which Links are important references and which may be 
irrelevant. That way, the system can figure out that three sides make 
a triangle independent of what color it might be. 

The UKS and Neurons 

Everything about the UKS described so far is independent of any 
Brain Simulator neurons. It’s just a data structure that is somewhat 
biologically plausible. To extend the UKS into the Brain Simulator’s 
neuron domain, an extension called UKSN adds two neurons to each 
Thing, one representing its input and the other its output. So, for 
example, neurons firing in the SpeechIn module can be connected to 
UKSN input neurons and corresponding output neurons can be 
connected to the SpeechOut module. This way, the UKS is accessible 
with the speech interface using the Brain Simulator’s standard 
synapse connections. 

The UKS and AGI 

One of the underlying tenets of Brain Simulator development is that 
in order to create General Intelligence, an AGI needs to represent 
and merge information from widely disparate sources and types. To 
represent something as simple as “Things fall down,” you need to 
understand about physical things, have seen things fall (an action), 
know about sequences of actions, have heard and learned the 
associated words…and on and on.  

Although still in its infancy, the implementation of AGI on the UKS 
can represent all this information in a useful way. As previously 
described, the organization of data within the UKS is governed by 
Links, so changing a few Links can completely alter the structure of 
the information.  

With the caveat that the organization of information can be 
changed easily, here is the current organization of information 
needed to implement AGI: 
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• Sensory—information from an AGI’s various senses. 
• Relation—allows sensory information to be stored. The brain 

doesn’t represent absolute information, it knows that various 
attributes are the same, different, greater, smaller, and a host of 
other relationships. 

• Action—things that an AGI can do. There will be simple actions 
(speak a Phoneme) that can be combined into complex 
sequences (sing a song while dancing). 

• Events—combinations of senses such as landmarks (a 
combination of visual or other inputs) or words heard along 
with references to actions and outcomes. 

• Outcome—the current state of the AGI relative to its internal 
goals. 

 
The top-level organization of the UKS for an AGI might look something like this. 
The Sensory and Action areas are fairly obvious as they correspond to known 
areas of the brain—the sensory and motor cortexes. Events (as described later) 
are the memories that combine sensory input with an action taken which led to 
an outcome. They are necessary to determine which action to take next. 

The AGI maintains an internal mental model but this isn’t so 
much a Thing as the collection of recent sensory inputs combined 
with physical positions. 

The combination of this information gives rise to the possibility 
of Reinforcement Learning. In a specific situation, an AGI takes an 
action that results in an outcome. If the outcome was positive, then 
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in a similar situation, the AGI will take a similar action. If the 
outcome was negative, the AGI can choose a different action instead. 

The UKS Dialog 

To develop UKS applications, you need to know what’s going on and 
there is a dialog that lets you view and drill down into the structure 
and content of the UKS. 

The content dialog can expand lists of children and references. 
Each Thing’s label is shown, followed by the use count and the 
Thing’s value if it has one. When auto-refresh is enabled, you can see 
the structure, use-count, and values changing as the UKS evolves. 

 
The dialog display of the UKS content shows a tree structure that can be 
expanded with mouse-clicks to show children and any References. After the label 
of each Thing is the use-count and the Thing’s Value if it has one.  In the lower 
right, you can select any labeled Thing to be the root of the display. Since the 
structure of information within the UKS is created with Links, it can be modified 
easily and at any time. With auto-refresh set, the display will immediately 
update to reflect the current structure and content of the UKS. 

Summary and Future Development 

The UKS is a powerful general-purpose graph structure that is 
biologically plausible because it could, potentially, be implemented 
in neurons. It can store any kind of data and may work in an entirely 
brain-like way.  

The UKS applications demonstrate two learning methods: 
Correlation and Reinforcement. In the Vision application, Sallie 
correlates words heard and objects seen to infer which words 
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describe which objects. In the Maze application, Sallie builds a 
structure where she can decide which action to take in a given 
situation to achieve a goal. In both instances, the learning is “one-
shot”, so a single presentation of information is sufficient. The 
software could easily be modified so that it would only learn 
progressively over several presentations—this would make it more 
life-like but not necessarily better. An inherent advantage of the 
computer over the brain is its ability to store information, reliably, 
in a single operation. 

The UKS is a prototype that demonstrates the feasibility of 
implementing such a system. The software within the Vision and 
Maze applications is specific to the problem and no effort was made 
to make it general purpose. Now that these applications (and a few 
others) are working, we can examine the commonality of their store 
and search functions to find a more generalized solution in these 
areas as well. Adding these abilities will go a long way toward 
building a General Intelligence system. 

The UKS stores everything. At some point with more complex 
problems, this will become an issue and a selective forgetting 
algorithm will be needed. 

The UKS is fast enough to support the small demonstrations so 
far. As progressively more complex problems (and generalized 
solutions) are addressed, we can assume that performance will 
become a bottleneck. As the current implementation is single-
threaded, it doesn’t benefit from multicore or multicomputer 
operation. There are several ways to address this issue. 

The early implementation of the UKS in neurons gives an 
indication of the maximum scale of the human neocortex. With the 
neocortex’s 16 billion neurons, using the NeuralGraph’s 16 neurons 
per node puts an absolute maximum capacity of one billion nodes. 
Using a more plausible 100 neurons per node yields 160 million 
nodes. Observing that the neocortex is not 100% devoted to this 
form of storage, it is reasonable to assume that the neocortex is 
limited to fewer than 100 million Things. While this might sound like 
a lot, from a computer/data perspective it isn’t much data at all.  

On the other hand, it may be possible to demonstrate AGI with far 
fewer nodes. If your UKS can only represent 1 million nodes, for 
example, could it manifest AGI? Obviously, if it’s a million nodes of 
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knowledge specifically about French Literature, then no. But if a one-
million node UKS has more general knowledge, then perhaps. 
Relative to an average person, it would have a limited vocabulary, a 
limited number of objects it can recognize, a limited number of 
possible actions and interactions with those objects, a limited ability 
to plan. Nonetheless,it might still seem intelligent.  

That’s the intent of the UKS. All-in-all, the UKS forms a powerful 
platform for AGI research. 

 

Video Links 

“Representing Knowledge in Neurons” 
http://futureai.guru/videos?id=116 
 
“Introducing the Universal Knowledge Store Pt 1” 
http://futureai.guru/videos?id=121 
 
“The Universal Knowledge Store Pt 2” 
http://futureai.guru/videos?id=122 

http://futureai.guru/videos?id=116
http://futureai.guru/videos?id=121
http://futureai.guru/videos?id=122
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Chapter 12: 
The Simulator,  

Mental Model, and Planning 
The real world is complicated. The way our senses receiving 
information, there is always ambiguity, errors, and noise which 
cloud our interpretation of reality. There are no programs today 
which can interpret input from the real world as well as the human 
brain—we can expect that to change soon. In order to move forward 
with software development, rather than coping with somewhat 
random, non-repeatable inputs from the real world, the Brain 
Simulator includes simulator Modules which can provide input with 
any desired level of complexity with noise-free, unambiguous, 
repeatable input.  

One impediment to interpreting real-world input is that your 
brain doesn’t just look at its input but builds an internal mental 
model of your surroundings. Your brain has to work hard to create 
and maintain that model, but in a computer, it’s much simpler. In the 
same way that the nearly 60 billion neurons which control your 
body’s movement can be replaced with a few microprocessors, 
building an internal mental model is much easier with a computer 
than with neurons. 

The key is that building on the abilities of the UKS, building an 
internal mental model is straightforward. Similarly, the planning 
process can involve modeling so it’s built as an extension of the 
mental model. Other types of planning are also just extensions of the 
UKS. 

This chapter details how these functions are currently 
implemented in the Brain Simulator. 

 

The Simulator 

The Brian Simulator contains two simulation Modules, a 2D 
simulator and a 3D simulator. The reasoning is that if Sallie can’t 
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comprehend the simpler 2D world, she won’t comprehend the 3D 
world either so it’s best to start with the simpler environment.  In 
both simulators, Sallie can move about and “see” objects in her visual 
field. The simulator receives information from Sallie’s physical 
functions and updates the visual inputs accordingly. 

 
The Simulator surrounds Sallie. At one end, it can create information for all of 
Sallie’s inputs (senses). At the other, it receives Sallie’s actions and updates the 
simulation to fit. For example, Sallie can move a physical object and this motion 
is reflected in the touch and vision inputs. 

 

The 3D simulator uses the computer’s graphic capabilities to 
project what Sallie would see from any given position and 
orientation. The simulator currently supports flat, rectangular 
objects. No collision or object motion is currently implemented. 

The 2D simulator has received much more development effort. It 
detects collisions between Sallie and the physical objects in the 
environment and these can not only move the objects but provide 
input to Sallie’s various touch sensors. The 2D simulator includes its 
own physics to support collisions between objects so if Sallie moves 
objects there is some representation of friction and a center of mass. 
Further, if one moving objects collides with another, the second 
object will move as well.  
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The only physical object type the 2D simulator supports is a line 
segment. This simple object is sufficient to exercise numerous 
intelligence features. Sallie can plan routes, move objects, create 
structures, and a myriad other possibilities. Each physical object has 
properties of color and aroma and some objects can move on their 
own (think birds). When Sallie touches an object, she receives 
accurate information about it’s relative position and orientation and 
whether she is touching near its end. Aroma, on the other hand, 
generates a field which declines over the distance from the object. 
This feature has been used to emulate food. Sallie can follow the 
direction of increasing aroma strength to get to a destination. To be 
compatible with the 2D environment, special 1D retina Modules 
have been created. These can use binocular vision to estimate this 
distance to visual objects. 

For object input, the 2D module has an abstract array of neurons 
and objects are represented by synapses connecting neurons. To 
manually add an object to the environment, simply add a synapse. 

This simulator can also create audible input. Currently, this is in 
the form of phonemes which describe objects in Sallie’s visual field. 
With this input, Sallie can learn to associate words with colors. With 
the simulator’s feedback, Sallie can learn by imitation to put together 
intelligible sequences of phonemes to create words and so verbalize 
about what she sees. 

Sallie will appear to “comprehend” the limited 2D environment if 
she can move objects around to accomplish a goal and verbalize 
about her actions. To do this, she must have learned about the 
physics of objects within the simulator, have the ability to plan for a 
future, and have the ability learn from her own trial-and-error 
experimentation—much like a toddler. Once Sallie has mastered the 
2D environment, spicing the 2D simulator’s features into the 3D 
simulator will be straightforward. Likewise, eventually replacing the 
3D simulator with cameras and microphones on a mobile platform 
is the logical next step. 

 
The Dialog 

The 3D simulator dialog shows the visual field as Sallie would see 
it. 
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The 2D simulator dialog is much more sophisticated. It shows 
Sallie’s position and orientation within her environment. Sallie’s two 
mobile arms indicate the positions of her touch sensors. 

 
The 2D Simulator dialog box shows Sallie’s location and orientation in her 
environment. The array of neurons to the left shows how the white synapses are 
used to create physical objects in the simulator. 

At the top of the dialog, “Set Model” is a shortcut which places the 
object information directly into Sallie’s internal mental model (see 
below) skipping the visual system. This is useful for testing to 
eliminate the errors and ambiguities inherent in the vision system. 
Two arcs (optional) represent the information in her field of view as 
the information going to her two retinae. 

The “Obj Spd” slider controls the speed of objects which have 
inherent motion. To make an object mobile, set its synapse weight to 
a value less than 1 with a positive weight moving in the X direction 
and a negative value moving in the Y direction. With the speed slider 
centered, there is no motion. Setting the slider to the right sets 
mobile objects moving in a positive direction and vice versa. 

A right mouse-click can direct Sallie to move to a specific position 
by setting a target position in the ModuleGoToDest Module. This is 
used in the “Imagination” Network. If the Module does not exist in 
the current network, right-clicks are ignored. 
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The Internal Mental Model 

What you see isn’t the input from your eyes, it’s the content of your 
internal mental model. If your eyes dart around, you don’t perceive 
motion in objects around you. You assume that surroundings are 
generally static as you move through surroundings. At the same 
time, you can have a pretty good idea of what’s behind you without 
looking. The level of detail is not nearly as good as it is within your 
visual field but you certainly presume that objects continue to exist 
even when you can’t see them. 

Given that the UKS can store any kind of information how do we 
store an internal mental model and how does this compare with how 
your brain does it? If you have a UKS filled with abstract knowledge 
about objects and their relationships, (perhaps books), how do we 
instantiate a specific book and place it in some specific location 
relative to ourselves. You can see a book in front of you. Now turn 
around. You’ll know the same book is behind you, you’ll know about 
what it looks like and how far away it is. 

The key is to allocate a new object for each instance of a book 
which you can see. Each book object can have additional attributes 
like spine color and the key to modeling is that it carries a location 
as one of its attributes. These instantiations are children of a Thing 
labelled “Phys Objects”. In the event physical objects have a specific 
location, the location is a child of World Model. I’ll cover how 
locations are stored and manipulated momentarily. The location is 
always relative to a center point which is the point of view of the AGI. 
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This diagram shows how the UKS can represent a world model with instances of 
physical objects. 

Now, for a list of all the objects you currently know the location 
of, you just need to enumerate the children of World Model.  

Moving and Rotating 

Thus far, everything has been properties of the UKS itself. But as 
the AGI moves through its environment or changes it orientation, all 
the locations need to be updated accordingly so they will remain 
correct relative to the point of view of the AGI. This is done with just 
a bit of trigonometry. All the locations which are children of the 
World Model are updated with every motion. 

The PointPlus 

As I mentioned in the UKS description, every Thing can have an 
arbitrary data object attached to it and locations use the PointPlus 
object. This is a point object which can be accessed or updated 
equally in either cartesian or polar coordinates.  So to rotate the 
world view, you need only add to or subtract from the direction of 
every location in the world model. To move (forward) you need only 
subtract from the X coordinate of every location in the world model. 

Internally, the PointPlus keeps both types of coordinates but only 
updates them as required. That is, if the polar direction is changed, 
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the cartesian coordinates are not updated until the values are 
needed and vice versa. This means that repetitive direction changes 
or motions can be handled with simple addition without any 
trigonometry. Trigonometry is only needed if rotations and 
translations are interspersed. Given the relatively small number of 
objects which must be maintained in the world model, the amount 
of computation is insignificant. 

For current experiments, the relative direction is represented by 
a single horizontal angle and so is a 2D position. The direction could 
easily be extended to be a horizontal direction and an elevation 
angle so as to represent 3D positions. 

The angle to any object is based on a specific pixel location in the 
visual sensor and so have consistent accuracy. But because distances 
are estimates based on binocular vision, their accuracy decreases 
with objects which are further away. The PointPlus also carries a 
“confidence” value which represents the expected error variability 
of the distance value. As the AGI sees an object again, it is likely that 
the distance value will be slightly different. The confidence value is 
used to determine whether the internal value should be updated to 
the new, sensed value. That way, if an object is seen at a large 
distance, there is likely to be a significant error and the confidence 
is low. As the AGI moves closer to the object, new values come in 
with better confidence and the internal values are updated. As the 
AGI moves further away, new incoming values will have a lower 
confidence so the internal values are not updated. Values received 
from the touch sensors have the highest confidence. 

Imagination 

There are two ways that the Internal mental model can be used for 
imagination.  

1. Imagining a different point of view 
2. Seeing “imaginary” objects 

Both these mechanisms have been implemented in the internal 
model. The first is used in the Imagination network as Sallie 
imagines what she would see from various alternative points of view 
and moves to that point if she can see her destination from there. 
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The second has been implemented and will be used for planning 
as that process is generalized. 

The Dialog 

The dialog associated with the Module2DModel displays the 
current content of Sallie’s internal mental model from her point of 
view. As Sallie moves and turns, the content of the model is updated 
and displayed so that objects in front of Sallie are always upwards in 
the dialog display.  

Each segment is shown in the color Sallie has seen and is 
displayed with white ends which indicate the confidence or accuracy 
in the position of the object. Because Sallie’s vision emulates 
binocular vision, the angular accuracy of any point in the model is 
constant but the distance accuracy degrades substantially with 
distance to the object. Longer white portions indicate lower 
accuracy. If an object has been touched, this is the most accurate 
possible position and there will be no white portion. 

 
The dialog for the Internal Model Module shows the physical objects Sallie 
knows about and are shown from her point of view. In this case, there are 
objects in the simulator which are not in the model because Sallie hasn’t seen 
them yet. The white ends indicates the confidence/accuracy of the distance 
value to the objects. The longer white ends on the right-hand object indicate 
lower confidence because the object is further away. 
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Planning 

Planning involves internally simulating a sequence of different 
possible actions in order to achieve a goal. But first, you need to learn 
about the individual actions and their consequences. The 
development of this process in the Brain Simulator is still in its 
infancy and is used in the Maze application (below).  

The key is learned abstract structures within the UKS which tie 
together a situation, an action taken, and the outcome.  If these are 
taken individually, an organism can evaluate its input, find the best 
match among its stored situations, then choose the action which led 
to the best result. In this manner, an entity can learn any number of 
situations of any desired complexity and relate them to actions, also 
of any desired complexity. This simple process can explain the 
behavior of animals which can be trained to respond to relatively 
complex commands with relatively complex behaviors. 

The process can be extended by adding the mental mechanism so 
that a sequence of actions can lead to a goal. So if a chimpanzee 
knows that standing on a block raises it up, and knows that stacking 
one block atop another creates a taller block, then it can envision 
stacking multiple blocks in order reach the bananas at the top of the 
enclosure.  

The implementation of planning within the Brain Simulator does 
will be expanded to offer this level of generality. Current solutions 
are purpose-built for a specific application but the UKS structure and 
internal model are intended to allow for this generalization. 

Application 1: Vision, Associating Words and Objects 

Two prototype applications have been created to illustrate how the 
UKS can be used to build intelligent behaviors. In the first, Sallie can 
be directed to move freely around her simulated environment and 
look at Things. At the same time, simulated voice input periodically 
says the color of the object she is looking at (e.g., “This is red.”). While 
other Modules process the voice and vision functions, the focus here 
is on how the UKS is used.  

As Sallie moves about the environment, objects she sees are 
interpreted into segments with a color that she can see. These are 
stored in the UKS in terms of Segment Things (children of “Segment” 
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which is a child of “Shape”). Each segment has references to two 
Point Things (also children of “Shape”) and a Color Thing (a child of 
“Visual” which is a child of “Sense” along with “Audible”). Every 
point she sees can be represented in terms of an angle (from 
straight-ahead) and a distance, which is estimated from her 
binocular vision. These are stored as PointPlus values on the Point 
Things.  

As she moves and rotates through her environment, all the 
PointPlus coordinates can be updated with her motion so they are 
always up-to-date. Sallie can easily determine if an object she sees is 
the same as one she has seen before.  

 

 
In this view of the Brain Simulator, the left window shows the Environment 
Simulator and Sallie’s position within her environment. The center window 
shows Sallie’s internal mental model of the world from her point of view; the 
display represents the UKS content of shapes and colors. The two rows of 
neurons below represent Sallie’s visual field; she can see blue at the left and 
magenta at the right. The right-hand window shows the content of the UKS 
including colors which she has seen. Color c3 is expanded so you can see that it 
is referenced by the shape s3 and has correlations with words she has heard. 
You can see that the word wRed has the best correlation with the color c3. 

This forms the basis of Sallie’s internal mental model. It’s not so 
much a Thing, but the collection of recently-seen objects. All the 
points she knows about automatically update themselves as Sallie 
moves and rotates within the environment. There is an optional 
display window of Sallie’s internal mental model, but it simply 
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accesses the current state of the Things in the visual memory portion 
of the UKS. It displays them so the AGI developer can gain insight 
into Sallie’s internal mental state. You can see the same data 
changing within the tree-view dialog box but it doesn’t make as 
much sense as the graphical display. 

The Environment Simulator periodically speaks to Sallie, telling 
her the color of the object in front of her with the phrase, “This is 
[red]”. This is added to the UKS as Phrase Things, which have 
ordered references to Word Things. Because Sallie can see more 
than one object at a time, there is some ambiguity in the 
announcement, and the words “This is” are extraneous to the 
meaning. Over a period of samples, Sallie can correctly associate 
color names she hears with the colors she sees. She learns that the 
“This is” is irrelevant because it is heard with everything and so has 
no differentiable meaning. Whereas the color names associate 
specifically with different objects she sees. 

Application 2: Maze / Learning by Trial and Error 

There are plenty of ways for a computer program to solve a maze. 
This approach is interesting in that it utilizes the UKS and builds a 
structure within the UKS that can be generalized to a wide variety of 
intelligent behaviors. 

 
This maze in Sallie’s environment illustrates how the UKS can be used to keep 
track of landmarks. The Event/Action/Outcome triples stored in the UKS form 
the basis of reinforcement learning. 

The content of the maze is programmed directly to the UKS in the 
structure of segments, points, and colors as described above. This is 
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done so that possible vision errors can be excluded from the 
behavior process. Further, the maze is orthogonal so at each 
decision point, a limited set of action choices is possible. 

As she explores the maze, Sallie remembers “Landmarks” which 
are Things that reference nearby segments. Unlike the segments in 
the previous demonstration, these Landmark Segment positions are 
static and do not update their position when Sallie moves about. 
That way, Sallie can know when she has returned to a landmark 
where she has been previously because she can recognize the fixed 
objects.  

At each landmark where a decision can be made, Sallie creates an 
Event Thing that references the Landmark. Children of the Event 
Thing are action/outcome pairs—each references an action Sallie 
took and the outcome which subsequently occurred. She then takes 
a random Action (RTurn, LTurn, GoS, UTurn) and creates the 
action/outcome Thing as a Child of the Event Thing. She then 
proceeds until she reaches another possible decision point or is 
blocked at a destination.  

If she is blocked, she remembers this color as the outcome of the 
current action/outcome pair. She makes a UTurn and continues on. 
If she instead reaches another new decision point, she creates 
another Event Thing in the UKS and uses that as the reference. If she 
reaches an Eventshe has previously visited, she can select a random 
action from those she hasn’t tried before and continue the process. 

Eventually, she learns all possible actions for all events. At that 
point, the entire maze has been traversed and the event list is 
complete. 
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This view of the UKS after Sallie has explored the maze shows that Sallie has 
encountered 10 decision points or “Events.” E0 is expanded so you can see that 
it is related to landmark Lm0 and at that point, Sallie tried four different actions. 
For example, she took a right turn which led to the event E1 and she went 
straight and reached the goal color c12. 

Now, given a goal color, the UKS can be searched for all Event 
Things that have a child which references the goal color. These 
events are also searched (similar to using the Recur relationship) 
until eventually the current Event (where Sallie is now) is 
encountered and Sallie takes the action associated with the 
Action/Outcome pair which led toward the goal. 

Here are a few important component points to consider:  
1. Everything needed to create data structures of essentially 

unlimited complexity exists in the basic UKS structure. Recall 
that the UKS can be implemented in biologically plausible 
neurons. 

2. What I’ve called the action/outcome pair is actually a triple 
when you take the Event into account; an event/action/outcome 
triple. In general, any intelligent entity considers its current 
situation in terms of similar situations from past experience and 
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then takes the action which leads to the outcome that best 
approaches its current goal. 

3. Finding your way based on recognizing landmarks is a 
biologically likely approach. 

4. The brain can use event/action/outcome triples repetitively to 
achieve a goal but usually can only consider a few steps toward 
a goal. The computer has the tenacity to consider unlimited steps 
to achieve its goal. 

5. The Event Thing can be as complex as necessary. In this 
implementation, it is limited to being a landmark consisting of a 
half-dozen segments because of limitations in the maze design. 
In the brain, not only could landmarks be significantly more 
complex but the event could consist of any number of diverse 
factors…anything the mind can sense or feel could be inputs to 
an event. 

6. Similarly, since the action and outcome are Links to other 
Things, these could also be significantly more complex. 

7. The maze in this demonstration looks pretty simple because you 
can see it all at once (as from above). If you instead put yourself 
in Sallie’s position and think of this as, perhaps, a hedge maze, it 
would tax the limits of the human brain’s abilities. If there were 
a unique goal for each endpoint, I, certainly, would be unable to 
go directly to any goal endpoint from any other without error. 
This maze contains only ten decision points (Events). 

The structure of Event triples can be generalized to form the 
underpinning of what is called “Reinforcement Learning.” In all 
situations, you remember what action you took in that situation and 
what outcome you received. The outcome might be simplified to a 
reward or punishment but in general, the situation, the action, and 
the outcome can all be complex. Subsequently, this structure would 
be pruned to eliminate situations that are similar, actions that led to 
indifferent results, etc. Alternatively, results that represent 
significant improvements or detriments could be made more 
important.  

Video Links 

“How Sallie Learns & the Universal Knowledge Store” 
http://futureai.guru/videos?id=123  
 
“How Sallie learns with Reinforcement Learning” 

http://futureai.guru/videos?id=123
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http://futureai.guru/videos?id=124 
 
“Short: Navigating a Maze” 
http://futureai.guru/videos?id=140 
 
 
 

http://futureai.guru/videos?id=124
http://futureai.guru/videos?id=140
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Chapter 13: 
Brain Simulator Performance 

on 
Multicore and Multiserver 

Systems 
This chapter is adapted from an academic paper and contributes to 
an estimate of the computer power required to emulate the entire 
human neocortex with the Brain Simulator II by implementing and 
measuring the performance in a single multicore computer and in a 
cluster of networked computers. The results are extrapolated to the 
scale of the neocortex based on measurement of the computational 
performance on the single machine and the network traffic needed 
for server-to-server transfers. Algorithmic improvements are 
identified for future implementation.  

The spiking neural model is based on observations of biological 
neurons and differs from most ANN algorithms in two important 
ways: 1) the array of synapses for any neuron is sparse and 2) 
significant processing is only needed for neurons that fire. These 
both contribute to the performance achieved on a single CPU which 
is RAM-speed limited. On the other hand, the sparse synapse array 
makes this algorithm less amenable to GPU acceleration. 

In general, computational performance scales linearly with the 
number of active synapses because the number of synapses is large 
relative to the number of neurons. Importantly, although 
computational and RAM requirements scale linearly with the 
number of synapses per neuron, network data requirements for 
machine-to-machine transfers generally scale with the number of 
neurons simulated on an individual server. 



170   Brain Simulator II: The Guide for Creating AGI 
 

As the performance is directly related to the number of synapses 
per neuron, we’ll examine the relationship between the number 
observed in the biological brain vs. the likely number needed in the 
simulation. The computer can allocate new synapses quickly while 
the brain cannot (both can adjust weights quickly). This means the 
brain must include a large proportion of near-zero-weight 
“synapses-in-waiting” to be used when the need arises. The 
computer need not simulate these because they can be allocated 
quickly when needed.  

The overall conclusion is that a model of the complete neocortex 
could be implemented on today’s hardware. The specific number of 
machines required depends on the number of synapses per neuron, 
the complexity of the neuron model, and whether the intent is to 
emulate in real time, or slower or faster by some factor. A sample 
calculation is done for 160 servers. 

Background 

While focusing on the performance of algorithms in multicore and 
multicomputer configurations, some neuroscience information is 
necessary to describe the scope of the problem. Overall, the brain 
will exceed the performance of any single CPU for the foreseeable 
future, so this chapter estimates the issues in processing across 
multiple parallel CPUs.  

Throughout the chapter, it should be noted that most biological 
measurements are approximations with only one or, at best, two 
significant digits. This section also describes values selected for 
subsequent estimates to help define the scope of variability in the 
estimates. 

Neuron Function 

As described previously, the neuron is essentially a digital device 
in that neural spikes are about the same size and variations in spike 
shape are considered noise. Relative spike timing is usually 
considered its only variable feature, and this is also subject to a great 
deal of noise (jitter). The amount of charge contributed by a synapse 
is limited to approximately 100 discrete values [Montgomery]. 
Although neurons are often described in terms of the continuous 
mathematical functions relating to membrane diffusion, exponential 
charge decay, etc., discrete approximations for these functions are 
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used in this presentation which likely exceed the accuracy of 
biological neurons because of the high noise levels in the brain 
[Faisal]. 

Neuron Performance 

Although the function of a neuron can be measured 
electronically, it is misleading to think of the neuron as an electronic 
device. Instead, it relies on the physical transport of ions or changes 
in their orientation and thus works in timeframes of milliseconds—
a billion times slower than today’s electronic components. The 
maximum expected firing rate for a neuron is about 250 Hz but this 
is not sustained, as neurons in the neocortex are estimated to fire 
only once every six seconds on average [Grace, Lennie]. This low 
average firing rate will be important in calculating the number of 
neurons that fire vs. the number emulated on a single server. 

The length of the axon is variable and, in neurons that transfer 
signals to the human body, may be over a meter in length. Within the 
brain, axon lengths can be loosely grouped into “long”, with lengths 
averaging 100 mm, and “short” with lengths averaging 10 mm 
[Braitenberg]. This categorization will be important in estimating 
the number of axons in a computer model which cross a boundary 
between one physical computer and another. 

Nerve conduction velocity for unmyelinated short axons is also 
quite slow at just a few m/s (walking speed). This means that the 
signal propagation from the cell body to the destination synapses 
may take several milliseconds, and this should be taken into account 
when estimating the necessary timescale resolution of the 
simulation. In estimates, a 2 ms per neuron cycle is used. 

Learning in biological neurons is not fully understood, although 
Hebbian learning is known to adjust synapse weights based on the 
near-concurrent firing of connected neurons. Other learning 
mechanisms may also exist but learning only affects a tiny portion of 
synapses at any given time. For example, once learned, the synapses 
involved in reading or understanding language cannot change 
substantially or one could forget these abilities rapidly if they were 
not used/reinforced. While one might learn new words, most 
learned words, the recognition of characters, etc. are seldom 
modified. 
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Useful Synapses 

At its destination, the biological axon branches out into as many 
as 10,000 synapses. The number of synapses that must be emulated 
will be smaller than the number measured in the neocortex by a 
substantial factor for several reasons. 

The computer can allocate new synapses quickly while the brain 
cannot. Biological synapse weights can be modified in tens of 
milliseconds while synapse creation and migration happen over 
periods of hours and days. This means the brain must include a large 
number of near-zero-weight “synapses-in-waiting” to be used when 
the need arises by adjusting the weight. The computer doesn’t need 
to simulate these because additional synapses can be allocated 
quickly when needed. 

Future confirmation of this hypothesis and the value of this factor 
could be estimated from the distribution of synapse weights within 
the neocortex, which is not presently known. It is also likely (but not 
yet observed) that multiple parallel synapses are needed to create 
an effective high synapse weight (again, the distribution of synapse 
weights would be useful). In a simulation, these multiple synapses 
can be consolidated into a single synapse with a weight equal to their 
sum. 

For the simulations, a factor of 100 is used, meaning that instead 
of 10,000 synapses per neuron, only 100 are simulated. The effect of 
this factor is clearly stated so adjustments can be made easily to the 
overall estimates. 

Further, for any of these synapses-in-waiting, separate synapses 
are required for those which are potentially excitatory and those 
which are inhibitory. These different synapses act with different 
neurotransmitters and cannot easily shift from one to the other. 
Since the computer can easily change the sign of a synapse weight 
from positive to negative, these multiple synapses are not needed. 

Although not addressed in this chapter, a similar factor may 
likewise be applied to the number of neurons to be simulated. As 
mentioned in the Universal Knowledge Store chapter, we speculate 
that 100 neurons are used in the brain where we can only identify 
16 as being needed. The brain may contain many redundant neurons 
for reliability while the computer may be able to ignore these and 
simulate just one because it is much more reliable. Further, the 
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computer may be able to simulate clusters of neurons easily to 
eliminate the need for substantial numbers of individual neurons. 
One might conclude that a full neocortex simulation might be 
accomplished with many times fewer neurons than the brain 
possesses. 

The Brain’s Connection Count 

The human brain can be considered in three parts: the brainstem 
which is largely responsible for autonomic functions; the cerebellum 
which is responsible for muscular coordination; and the neocortex 
which is responsible for higher-level functions. This chapter will 
focus specifically on the neocortex. 

The neocortex contains about 16 billion neurons which are 
concentrated near the convoluted outer surface while the interior 
consists of a mass of axonal connections. If smoothed out, the 
neocortex would roughly be a disk with an area of 2,600c m2 (a 250 
mm radius) as shown in the figure. In the neocortex, the neurons are 
in several layers near the surface but for the purpose of these 
calculations, the layering can be ignored with all the neurons 
assumed to exist in a single layer. 

The neuron density is therefore 16 billion/2,600 cm2 or 
~60,000/mm2 or (linearly) ~250 neurons/mm. With the average 
short axon length of 10 mm, we can expect that neurons routinely 
connect to others that are 2,500 neurons away or more. The 
flattening of the simulated neocortex will make more columnar 
axons shorter as they don’t leave the plane of the outer layers and 
then return. But it will model others as longer if they connect from 
one fold to another. A length of 10 mm will continue to be used for 
estimation. 
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The neocortex can be modeled as a disk of neurons with the two hemispheres 
being largely independent. Each with 8 billion neurons, they are connected by 
the 300 million fibers of the corpus callosum which represent the ~100mm-long 
axons of their respective neurons. Within each hemisphere, the number of axons 
crossing any particular boundary can be estimated by considering a line of 
neurons forming a perpendicular to the boundary and multiplying by the length 
of the boundary or about 200,000 axons/mm of boundary length (in each 
direction). 

We can use these factors to estimate the number of axons that 
cross any given boundary within the neocortex, which will be 
necessary to estimate the number of signals which will transfer from 
one computer to another in a multiserver configuration. The 
likelihood that any randomly oriented 10 mm axon crosses a 
boundary is given by: 

 
where d is the distance from the neuron to the boundary (in mm). 

This is the portion of a circle of radius 10 mm centered on the neuron 
which crossed the boundary. 

Since the neuron can be anywhere from 0 to the axon length away 
from the boundary, summing these probabilities along a line of 
neurons perpendicular to the boundary (as in the inset in the figure) 
leads to the expectation that any row of neurons will likely present 
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approximately 800 axons crossing the boundary or 200,000 
axons/mm of boundary length.  

 
In a neocortex hemisphere, any radial slice through the neocortex 

can be expected to be crossed by 50 million axons. This figure will 
be used to estimate the amount of data to be transferred from 
machine to machine if the neocortex were subdivided into multiple 
sectors. Long connections serve to increase the data transfer 
requirement. 

The Simplest Neural Algorithm 

The simplest neural algorithm is “Integrate and Fire” [Abbott] which 
is given by equations 3, 4, and 5. Numerous features could be added 
which make the algorithm more biologically accurate [Gerstner] as 
will be discussed later. 

The algorithm is split into two phases so the result becomes 
independent of the order of the neuron calculation and is more 
amenable to parallel computation. In the equations, time t+ 
(calculated in Eq. 3) is the intermediate time between t and t+1. 𝑢𝑢𝑡𝑡+ 
represents the intermediate value which is calculated for each 
neuron. In the second phase (Eqs. 4 & 5), the internal value is 
updated for all neurons and if the threshold ϑ has been reached, 𝑢𝑢 is 
reset to zero and a spike is transferred to the output. 

 
As an example of the issue that this two-phase calculation 

corrects: if a neuron receives two inputs with weights +1 and -1, the 
order in which these are processed could change the outcome. In a 
multiprocessing implementation, the output would be 
indeterminate. With the two-phase approach, all summing is 
performed prior to threshold detection so the calculation is 
consistent. 
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In the Brain Simulator, the algorithm is “inside-out” in that each 
neuron maintains a list of synapses which are its outputs. When the 
neuron fires, it adds the synapse weight to the internal charge of 
each target neuron. A synchronization lock on each target neuron 
charge value allows for multiprocessor operation without potential 
race conditions where multiple threads running on different cores 
might attempt to modify the internal charge of single a neuron 
simultaneously. In practice, such collisions are extremely rare so 
these locks are insignificant to performance. 

Different from ANNs 

It is important to note distinctions between this spiking 
algorithm and more typical ANN algorithms. This algorithm’s 
neurons output digital spikes as opposed to floating-point numbers. 
Accordingly, processing is only required for neurons that are firing. 
Thus, processing time goes up with the number of neurons that are 
firing and the overall array size contributes only a slight overhead. 
Based on the fact that a neuron fires only once every 6 s on average 
and using a 5 ms cycle time, an individual neuron would be expected 
to fire once every 1,200 cycles. For an array of 100 million neurons, 
processing is expected for only 83,000 neurons in each cycle. If a 1 
ms cycle time is selected, the expected number of firings drops to 
only 16,000. This selection of the cycle time does not impact the 
number of neurons firing per second and so the CPU requirement 
does not scale directly with the cycle time, but the “overhead” 
processing is required for every cycle regardless of the cycle time. 

Further, in this algorithm, synapses of a neuron can connect 
directly to any other neuron in the network. In the brain, the 
synapses connect to other neurons within the radius of the axon 
length (10 mm) so there could be 10,000 connections from a 
possible 6.5 million target neurons. This still represents such a 
sparse array that this algorithm is much less amenable to the GPU 
acceleration favored by ANN algorithms which rely on filled arrays.  

The focus of most ANN systems relates to backpropagation 
learning. For this discussion, learning affects such a tiny portion of 
synapses in any cycle that it is not included in this performance 
analysis and so the analysis is feedforward only. Although Hebbian 
learning has been implemented, it is not included in this analysis. 
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A departure from biological equivalence in this simulation is that 
all synapses run direct from one neuron to any other. Because 
biological synapses are clustered at the end of the axon, improved 
efficiency may be possible, particularly in a multicomputer 
implementation. 

Performance in a Multicore Environment 

In this section, data is presented for processing performance on a 
single server which can be used in estimating the number of servers 
for the neocortex simulation and some configuration requirements 
(RAM, cores, etc.) for each server. All timing measurements are 
made using the system high-precision clock which presents time in 
100 ns increments. Timings were then calculated with a moving 
average of 100 readings to create repeatable results. 

Tests were performed on a 64-core AMD Ryzen 3990X CPU 
running at 4.0 GHz with 128 GB of quad-channel DDR4 3200 RAM 
with Windows 10 Pro. Testing was performed on the Brain 
Simulator II version 0.4. 

Sensitivity to number of neurons (overhead) 

There are two components to the algorithm’s processing time 
that predominate with different configurations of network 1) 
“overhead” and 2) “neuron processing.” As mentioned before, 
neuron processing is only required for neurons that fire but there is 
some degree of overhead that scales more-or-less linearly with the 
number of neurons. It is necessary to keep track of which neurons 
require processing and this is done with a bit-field with each bit 
representing a neuron, combined in 64-bit words. This means that 
with a single 64-bit memory access, the software can determine 
which of the 64 neurons require processing if any. This proved much 
faster than maintaining a list of neurons requiring processing. 

Overhead was measured by allocating neural arrays with no 
synapses and no neurons firing and is shown in Table I. This area of 
code has been optimized to minimize RAM access and so is 
substantially faster with increasing numbers of threads. At this stage 
of development, it appears that overhead processing is intractable 
so any real-time simulation requirement is limited by overhead 
issues. On the other hand, simulating a 2 ms cycle in 20 ms makes 
overhead insignificant. 
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In further tests, overhead processing has not been subtracted out 
but explains the mixed-slope processing times. Note also that for 
100 million and 1 billion neurons, RAM limits on the test server 
precluded allocation of substantive numbers of synapses per 
neuron. 

TABLE I.  OVERHEAD TIMING MEASUREMENTS 

Number of 
neurons 

1M 10M 100M 1G 

Time per cycle 
(ms)  
124 threads 

0.70 1.8 3.7 26 

Time per cycle 
(ms)  
32 threads 

0.52 1.3 7.6 62 

Time per cycle 
(ms)  
16 threads 

0.4 0.96 8.4 82 

 
Sensitivity to number of threads 

For these tests, an array of one million neurons was allocated, 
each with 100 random synapses. These arbitrary numbers were 
chosen to facilitate ease of testing. Random synapse weights were 
adjusted so that approximately 33,000 neurons per cycle would be 
firing, which is representative of the number of expected neurons 
firing in an array of 100 million neurons with a 2 ms cycle time. If 
one were to decrease the cycle time, fewer neurons would fire in 
each cycle but overhead processing would become more significant. 
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This graph shows the observed processing time per neural cycle to handle a 
million neurons firing, each with 100 synapses set to fire 33,000 neurons per 
cycle. The total of 3.3 million synapses being handled in 10 ms leads to the raw 
figure of 330 million synapses/s. 

In any neural network, the number of synapses is large relative 
to the number of neurons and overshadows other factors so that 
processing time goes up linearly with the number of active synapses. 

The 64-core machine is not processor-limited as near-maximum 
performance is achieved well short of all cores processing fully. 
Examination of the disassembly with a performance profiler showed 
that with large numbers of threads, over 90% of the computer time 
is spent waiting on the single instruction where the CPU must 
retrieve the target neuron from RAM to add to its charge. Since the 
target is at a random address relative to the current neuron, nearly 
every access to a target neuron will result in a CPU cache miss and 
all CPU cores must wait in line to retrieve their target neuron values 
from RAM. 

A side effect of being RAM-limited on synapse targets is that 
neuron processing time is essentially irrelevant as long as it depends 
on neuron values that are in the CPU cache. With a more 
sophisticated neuron model, such as in [Izhikovich], the CPU will 
spend time calculating the neuron value which would otherwise be 
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spent waiting for other threads. As an example, a leakage factor was 
added which causes neuron charge to decay exponentially. Not only 
did this not increase processing time, but processing time decreased 
measurably. 

Sensitivity to Synapse distance 

It was observed that processing time decreases as “axon” length 
decreases (neurons are nearer each other in the array) since nearby 
target neurons are more likely to reside in the CPU cache. As the 
synapse list approaches a continuous array, a six-fold increase in 
performance was obtained. This has not been pursued as it is not 
biologically plausible. 

Conclusions for Server Configuration 

As currently implemented, each neuron requires 144 bytes and each 
synapse requires 16 bytes of memory. While the processor 
requirement goes up only with the number of neurons and synapses 
that fire, the numbers of neurons and synapses allocated dictate the 
RAM requirements. 

TABLE II.  RAM REQUIREMENTS 

Synapses/ 
neuron 

1 millino 
neurons 

10 millino 
neurons 

100 
million 

neurons 

1 billion 
neurons 

10 304 MB 3 GB 30 GB 304 GB 

100 1.7 GB 17 GB 170 GB 1.7 GB 

1,000 16 GB 160 GB 1.6 TB 16 TB 

10,000 160 GB 1.6 TB 16 TB 161 TB 

 
As the system performance is RAM-access limited, the shaded 

areas of Table II would be useful. Further, the performance 
improvement for more than 16 cores (32 threads) is marginal.  

As previously estimated, a server with 100 million neurons and 
100 synapses per neuron would be expected to process 33,000 
active synapses per 2 ms (real-time) cycle and would execute cycles 
in about 12 ms (10 ms measured +2 ms estimated additional 
overhead). Accordingly, the server would be running at one-sixth 
real time. Any number of tradeoffs can be made but in general, the 
processing time will decrease with decreasing active synapses. 
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Performance in a Multi-Computer Environment 

This section presents results of initial experimentation to establish 
the performance characteristics of a multicomputer 
implementation, while the following section projects these results to 
a complete neocortex emulation. Here, we consider the ability to 
handle larger arrays of neurons without a prohibitive loss in 
performance.  

For multicomputer testing, two additional computers were used: 
An Intel i7 4565 CPU running at 2.4 GHz 16GB DDR4 dual-channel 
RAM running at 1,198 MHz, and an Intel i7 6700 running at 3.68 GHz 
with 16GB of dual-channel DDR4 RAM running at 1,064 MHz. Note 
that these computers are substantially slower than the one used in 
the previous section. All computers are connected with a 1 Gbps 
ethernet LAN. 

 
In a single-computer configuration (left), the user interface communicates with 
the server engine directly through RAM. In a multicomputer configuration 
(right), the same user interface and engine communicate through a LAN with 
thin client and server wrappers. Neuron servers send synapse firing information 
directly to each other. Although Neuron Servers can communicate directly with 
any other server, in this experiment, all synapse connections are “short” and will 
target an adjacent server. 

Each server runs the same Neuron Engine .dll as in the previous 
tests as shown and the Neuron Server layer handles synapse 
references that extend outside the array on the local machine 
(“boundary synapses”). When a boundary synapse activates, its 
weight and destination are placed in a queue. When the basic 
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Neuron Engine cycle is complete for all local neurons, boundary 
synapses are dequeued and sorted so that firings can be clustered 
into data packets and sent to the correct server. 

On the receiving end, each server listens for incoming packets 
and makes the appropriate changes to the target neuron internal 
charges. No significant effort has been expended in optimizing this 
process as it is assumed that the data transmission time will 
overshadow any computation time. For example, the 
encoding/decoding process is single-threaded. This “data transfer” 
phase was added for ease of development and measurement and 
significant possible performance improvements are outlined later. 

In this initial implementation, the client directs all servers to 
execute a single neuron cycle and then waits for all servers to 
complete the neuron cycle and then transfer any boundary synapses 
with timing results shown in Table III. Because of the synchronized 
nature of this implementation, the system runs at the speed of the 
slowest computer in the network. This issue could be avoided by 
using a cluster of matched, high-performance servers.  

TABLE III.  TIMING FOR MULTIPLE SERVERS. 

Number of 
servers 

Total 
Neurons 

Total Active 
Neurons 

Overall 
cycle time 

Timing  Total 
boundary 
synapses 

1 1 M 0 10 1.5/0 0 
1 1 M 34,000 88 82/0 0 
2 2 M 63,000 116 55/53 

48/44 
99K 

3 3 M 93,000 115 51/49 
44/50 
11/47 

146K 

Table III shows that after the first server, cycle time is 
independent of the number of synapses because the number of 
boundary synapses is constant for each added server. The “Timing” 
column shows the firing and transfer times for each server. These 
can be subtracted from the overall cycle time to estimate the 
overhead of running in a client/server configuration. 
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Each Neuron Server reports performance data including the amount of time 
spent in the firing algorithm vs. the amount of time in data transfer along with 
the number of active boundary synapses. 

Each server can transmit approximately 50,000 boundary 
synapses in 50 ms or ~1 million synapses/s. Each boundary synapse 
requires 9 bytes of information, the target neuron, the weight, and a 
flag. These are packed into UDP datagrams with a maximum of 1,500 
bytes (the default maximum packet size) so each datagram packet 
can send 166 active boundary synapses. UDP is a full-duplex 
protocol so servers can transmit and receive simultaneously. UDP 
includes no reliability checking but in the controlled environment of 
these tests, it is error-free as the ~50,000 synapses/s represent less 
than 1% of the network capacity. 

Discussion 

The result of this test indicates that any number of servers can be 
added to simulate any desired size of neuron array. In practice, other 
factors will likely emerge with larger numbers of servers and further 
experimentation will be needed to identify these. Overall, 
performance remains constant for two or more servers because 
each server adds the computational and transmission capacity 
needed to process its neurons and the amount of server-to-server 
network traffic is constant between any pair of adjacent servers. 
This also ignores the concept of long connections which will be 
discussed in the next section.  

As it stands, the network transfer implementation is far from 
optimal even in terms of today’s hardware. Here are some additions 
which could make it significantly faster: 
• Use a 10 Gbps network. Estimated performance improvement: 

10x. 
• Create “virtual axons”. Rather than sending individual active 

synapse weights, the output of a neuron can be transferred to 
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the receiving server where it is distributed to multiple target 
neurons. Only a single number (5 bytes) representing the axon 
must be transferred as all the weight information will reside on 
the target server. The estimated performance improvement is 
equal to the simulated number of synapses per neuron. (A side-
effect of this change is that learning can be implemented with 
the synapse data needed residing on individual servers rather 
than ever crossing server boundaries.) 

• Overlap the transmission phase in parallel with neuron 
processing. This introduces a one-cycle delay in signals crossing 
machine boundaries which could be an issue. Estimated 
performance improvement: can reduce the network delay to 
near zero as neural processing will be slower than network 
transfer. 

Simulating the Entire Neocortex  

Based on the performance testing above, we can create an improved 
estimate of the amount of computer power needed to emulate the 
neocortex’s 16 billion neurons, assuming the improvements above 
are implemented. Conceptually, each hemisphere could be 
subdivided radially across N. 

Short Connections: The number of axons crossing each radial 
boundary is independent of N and is estimated at 50 million.  (250 
mm * 250 neurons/mm * 800 boundary synapses/neuron). With an 
expected activity rate of once every 6 s, the expected data load would 
be 42 MB/s (5 bytes/axon * 50 million axons / 6 s) which is well 
within the expected performance of a 10 Gbps network. 

Long connections: Axons that connect one hemisphere to the 
other or elsewhere and represent as many as 300 million fibers. We 
assume that these connections will always cross a machine 
boundary and must be added to any short-connection calculations. 
We further assume that they will be distributed evenly among the 
various machines, meaning that each machine would be burdened 
with an additional 300M/N connections. Regardless of the activity 
rate, these turn out to be inconsequential relative to the boundary 
axons. 

Using the experimental data, a server simulating 100 million 
neurons with 100 synapses each can run in one-sixth real time. You 
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would require 160 such servers to simulate 16 billion neurons, 80 
for each hemisphere. Each server would be responsible for 
transferring 50 million short connections and 2 million long 
connections. Continuing to use a firing rate of every 6 s and an axon 
number of 8 bytes yields a data transmission requirement of ~80 
MB/s. 

Using a different number of synapses per neuron or average 
firing frequency scales the problem linearly. That is, using 10x as 
many synapses will make the simulation run 10x slower so one 
second of “thinking” would require one minute of simulation. 
Increasing the number of servers will only compensate up to the 
point where sectors become so small that a short connection will 
span more than the adjacent sector, dramatically increasing the 
number of boundary connections. 

These performance experiments indicate that creating a full-
neocortex simulation is feasible on today’s hardware with the scale 
of the implementation based on various assumptions and the 
outcome of future neuroscience discoveries. Chief among these is an 
improved understanding of the actual synaptic interconnection 
patterns and processes among neurons. 
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Video Links 

“Brain Simulator II Tops 2.5 Billion synapses per second” 
http://futureai.guru/videos?id=129 
 
“Multiserver Functions with Brain Simulator II” 
http://futureai.guru/videos?id=131 
 
“How Your Brain Works Part3: Computational Capacity” 
https://futureai.guru/videos?ID=106  

http://futureai.guru/videos?id=129
http://futureai.guru/videos?id=131
https://futureai.guru/videos?ID=106
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Chapter 14: 
Future Development 

The Brain Simulator is an ongoing project with the target of creating 
an Artificial General Intelligence. The prototype AGI, “Sallie”, can do 
lots of things but, in general, cannot do many of them at once or do 
them on complex data. 

Here are some of the things which Sallie can do right now: 
• Move around within a simulator and build up a mental model 

of surroundings from vision. 
• Update the mental model by touch. 
• Avoid obstacles while moving in the environment. 
• Move objects in the environment to achieve a goal. 
• Learn words associated with object features. 
• Respond to voice commands and produce spoken responses. 
• Imagine the environment from a different point of view. 
• Plan a series of actions to achieve a goal. 

Development has been on a small scale, limiting Sallie to 
encountering just a few object types and a few attributes and 
learning just a few words. The reason for the small-scale approach 
is the presumption that if we can’t solve a problem with just a few 
parameters, solving it with thousands is beyond impossible. The 
development intent is to build a system that can truly understand 
just a few object types before moving on. For understanding, think 
of how a three-year-old knows about things in her environment. 
What is there to understand about simple blocks…shape, stacking, 
falling, inertia, color, planning, goals, following verbal directions, 
giving verbal descriptions…all things we might associate with a true 
AGI but on a tiny scale. 

With just a few parameters, we can take software shortcuts and 
learn which processes work and which don’t. Once small-scale 
issues are overcome, the structure of the Brain Simulator can be 
scaled up to huge arrays of neurons or a limitless UKS. 



188   Brain Simulator II: The Guide for Creating AGI 
 

Current development provides for pre-defined object and 
parameter types. In the UKS chapter, I described how Blue and 
Brown are both Colors. But how can we make this generalization? 
We can imagine that somewhere in the brain, every input is just a 
neuron firing. Now, the difficulty is to determine that some firings 
represent a shape and others, a color, or a size (or a sound or touch). 
The key is to know that certain groups of neurons represent a 
category (such as shape or color). Armed with the ability to infer 
categories from what would otherwise be seemingly random 
incoming neural spikes, it is likely that greater intelligence will 
emerge. Other components such as internal modeling and the ability 
to learn from mistakes are already in place. The ability to relate 
words to other inputs is also already in place. 

In coming development iterations, Sallie should be able to 
explore her simulated environment and “understand” what there is 
to be learned. I put the word understand in quotes because: How 
much can you learn about a few two-dimensional objects in a two-
dimensional world? She should be able to learn that some objects 
are moveable and that she can move objects to accomplish her goals.  

Once the current simulated environment is mastered, Sallie can 
be upgraded to a three-dimensional simulator. Again, with just a few 
possible objects and actions, Sallie should be able to learn 
everything possible about that environment as well. She should be 
able to learn about object persistence and the passage of time, and 
planning for the future, and the simple physics of gravity. With these 
abilities common to any three-year-old, she should be able to expand 
her horizons to real-world interactions. 

Advances will be gradual and, at each step along the way, we’ll be 
able to ascertain that Sallie is safe and progressing toward becoming 
a useful asset to humanity. 
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Glossary 
This glossary is intended to clarify how terms are used within this 
book. Also, note that terms (like “Network”) are capitalized within 
the text when they refer to specific Brain Simulator features. 

 
AGI (Artificial General Intelligence): Possible future extension of 

AI to enable it to perform virtually any mental task a human 
can. 

AI (Artificial Intelligence): Branch of computer science involved in 
developing systems to perform tasks normally requiring 
human intelligence. 

Algorithm: A procedure or set of instructions that can be followed 
explicitly to solve a problem. A computer program that can 
be executed by a CPU is an implementation of an algorithm. 

ANN (Artificial Neural Network): A computer system, usually 
software, designed to loosely follow the computational 
processes of the human brain involving a large number of 
identical computing cells. 

Axon: The part of a biological neuron that carries the signal from the 
cell body to the synapses. 

Backpropagation: An ANN algorithm for adjusting synapse weights 
in a neural network that creates learning using the 
difference between a network’s output and a known desired 
output. 

Cache memory: Portion of a CPU that maintains a copy of a portion 
of RAM content so the CPU can access it more quickly than 
via a full RAM access. 

CPU (Central Processing Unit): Part of a computer that retrieves 
program instructions from RAM and follows the program to 
manipulate data. 

Deep learning: A neural network with many internal, “hidden”, 
layers.  
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Dendrite: The part of a biological neuron that receives neural pulses 

from other neurons via synapses. 
Dialog: A custom display window for a Module.  
DNA (Deoxyribonucleic acid): The long-chain molecule consisting 

of a “ladder” of different base pairs which code for the 
creation of proteins in living cells. DNA can be thought of as 
a data storage device. 

DRAM (Dynamic Random Access Memory): Type of RAM 
common in computers characterized by the requirement 
that it must be periodically refreshed or its memory content 
will be lost. 

Graph: An abstract construct of “nodes” connected by “edges” used 
for knowledge representation. 

Knowledge Graph: See “Graph”. 
LAN (Local Area Network): High-speed connection between 

computers which is differentiated from Network which is a 
collection of Neurons connected by Synapses. 

Learning: Adjusting synapse weights to allow a network to adapt to 
perform a specific action, such as learning to recognize 
phonemes. 

Link: Within the UKS, the connection between two Things. It may 
optionally be weighted or tagged to be processed 
sequentially. 

Module: The software that can be applied to a cluster of neurons to 
create some unique functionality. 

ms (millisecond): A thousandth of a second. 
µs (microsecond): A millionth of a second. 
Network: Collection of Neurons connected by Synapses (along with 

Modules and other information). This is differentiated from 
LAN (a computer network) and neural network (which is a 
specific kind of AI). 

ns (nanosecond): A billionth of a second. Light can travel a distance 
of about 30 cm in this time. 

Neural network: See ANN. 
Neural Spike: In biology, the measured voltage spike that travels 

down a neuron’s axon to target synapses. In the Brain 
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Simulator, a spike is the execution of the algorithm which 
processes a Neuron’s Synapses and adds their weights to 
target Neurons. 

Neuron: A biological cell that is a component of the brain and 
nervous system. Neurons process pulses received from 
other neurons and transmits pulses to other neurons. Within 
the Brain Simulator, Neuron refers to a specific simulated 
entity. 

Neuron Engine The portion of the Brain Simulator that actually 
handles the simulation algorithms. This is a separate DLL file 
from the user interface. 

Neuron Server: A stand-alone configuration of the Neuron Engine 
which receives and transmits all its data via a LAN.  

Neurotransmitter: A biological molecule that carries a neural 
signal across a synaptic gap from one neuron to another. 

Phoneme: Any audible unit of speech. A single syllable is usually 
made up of multiple phonemes. “Ball” is made up of three 
phonemes consisting of the sounds of the “b”, “ah”, and “l”. 

Spike: See “Neural Spike”. 
Synapse: The part of a biological neuron that transfers a neural 

signal from one neuron to another using neurotransmitters. 
Within the Brain Simulator, a Synapse is a weighted 
connection between a pair of Neurons: a source Neuron and 
a target Neuron. 

Thing: Within the UKS, a Thing is a node connected to other Things 
by Links. 

UKS (Universal Knowledge Store): A software implementation of 
a knowledge graph in a Module 

Transistor: An electronic switch with three connections where 
electricity applied to one of the connections controls the 
flow of electricity between the other two. 

XML: A standard file format that can be used to represent virtually 
any data. The content of the file more-or-less defines the 
structure of the data. 
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