

Preface: Computers I Have Known 1

Books by Charles Simon

Brain Simulator II: THE GUIDE FOR
CREATING ARTIFICIAL GENERAL
INTELLIGENCE

The companion book to the Brain Simulator II
software, it contains everything you need to get
started experimenting with Artificial General
Intelligence (AGI). This book includes descriptions of
several spiking neuron models, the User Interface,
the Neuron Engine, and Software Modules for
functioning neuron clusters, and AGI applications.

172 pp. 2021

Will Computers Revolt?
PREPARING FOR THE FUTURE OF
ARTIFICIAL INTELLIGENCE

This award winning and well-reviewed book,
Describes the When? Why? and How Dangerous? of
future computers which will exceed human abilities.
It is not all doom and gloom, but there are actions
we should be taking now!

2nd Edition, Updated and Expanded, 360 pp.
Coming in May 2021

Computer Aided Design of Printed
Circuits: THE GUIDE FOR EVALUATING,
PURCHASING, AND USING COMPUTER
AIDED DESIGN SYSTEMS

From defining what printed circuits are, to how a
computerized printed circuit design system works, to
explaining the hardware and software of the system,
and acquiring and using the design system, this book
will give the reader a complete understanding of the
process.

357 pp. 1987, Currently out of print.

QuickStart Circumnavigation
Guide: PROVEN ROUTE AND SAILING
ITINERARY TIMED FOR WEATHER

Dreaming about Sailing the Seas? Get ready to get
off the dock and sail YOUR OWN WORLD CRUISE! In
this adventure of a lifetime, Capt. Charlie and Cathy
Simon spend 14 months visiting five continents, 16
countries and crossing three major oceans, plus,
many Seas sailing a 26,000-mile circumnavigation in
2014-15. It is easy to read, well organized, and
entertaining.

166 pp. 2016

The ARCTIC CIRCLE Northwest
Passage Guide: SATELLITE- MAPPED
SAILING ITINERARY

This second book in the World Sailing Guru series
follows the adventures in the ice of world
circumnavigators Captain Charlie and Cathy Simon
as they sail their way with their crew of world sailors
through the legendary Northwest Passage of the
Canadian Arctic and Alaskan Arctic in 2017.
Returning to the US East Coast via the iconic Panama
Canal the book includes their passage notes of the
circumnavigation of the North American Continent in
2018.

204 pp. 2020

Charles J. Simon, Memoir:
AMERICAN PORTRAIT OF A
PIONEERING SAN FRANCISCO FAMILY

Beginning in the 1800’s the Simons and the
Schoenfelds made their fortunes in and around San
Francisco, California. From Civil War restrictions, to
taking passage on the first transcontinental railroad
train, the Great 1906 earthquake and fire, the
Panama–Pacific International Exposition in 1915
celebrating the completion of the Panama Canal, to
today’s technology endeavors my family has played
a part. The book showcases spectacular San
Francisco events.

145 pp. Coming in May 2021

Preface: Computers I Have Known 3

Also by Charles Simon

Visit https://futureai.guru/founder.aspx for a complete
publication list.

Software/Hardware, Charles Simon
The Brain Simulator II

The BRAIN Simulator: Tutorial Software for Neural Circuit
Design

EEG System (Brainwave Monitoring)

EMG EP, neurodiagnostic software

Synthetic Intelligence

Cynthia Voice-activated Intercom

3-D ComputerScape

3-D MiniCAD for Windows

3-D Mouse

Continuum: Software for Enterprise CAD

Printed Circuit CAD Graphics

Committee Boat Suite (Software for Sail Racing Support)

Flying Media: Museum Interactive System

Passport to Discovery: Museum Interactive System

https://futureai.guru/founder.aspx

Preface: Computers I Have Known 5

BRAIN
SIMULATOR II

THE GUIDE FOR CREATING
ARTIFICIAL GENERAL INTELLIGENCE

CHARLES J. SIMON

FutureAI Press

Washington, DC

http://brainsim.org

Published, April 21, 2021, in the United States by FutureAI Press,
455 Massachusetts Ave NW #120, Washington, DC, 20001, info@futureAI.guru

Copyright © 2021 Charles J. Simon, all rights reserved. Except for use in a review, no part of

this book (except licensed content as noted below) may be reproduced in any form or by any
means, electronic or mechanical, including photocopying, recording, and by any information
storage or retrieval system without written permission of the publisher. Images and other items
marked as being included under a Creative Commons (“CC”) license may be reused under that
license.

ISBN-13 (eBook): [TBD]
ISBN-13 (Paper): 978-1-7326872-4-0
Printing Version: 9/25/2023
First Edition

Book Sales, worldwide through Amazon.

Some of the images in this book are available for use under various Creative Commons

licenses. These licenses require that URL links to the license text accompany the use of the
photograph. For reference, the license URLs are as follows:

CC BY 1.0 https://creativecommons.org/licenses/by/1.0
CC BY 3.0 https://creativecommons.org/licenses/by/3.0/
CC BY-SA 2.0 https://creativecommons.org/licenses/by-sa/2.0
CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0

Preface: Computers I Have Known 1

Table of Contents
Preface Computers I Have Known ... 1
Introduction ... 9

What makes the Brain Simulator II Unique? 9
About the Brain Simulator II Project ... 9
Who Should Read this Book? .. 10
The Structure of this Book... 11
Getting the Brain Simulator .. 13
Video Links .. 14

Chapter 1: Brain Simulator II Strategy OR How to Create AGI 15
Development Philosophy .. 15
The Reasoning Behind the Brain Simulator............................. 16
The Intelligence Model .. 17
The Neuron Engine, User Interface, and Modules 19
What, no Backpropagation? .. 20
Video Links .. 20

Chapter 2: Modeling Neurons and Synapses 21
The Biological Neuron ... 22
The Integrate and Fire Model ... 25
Adding Leakage ... 27
Randomness and Noise ... 29
The Burst Neuron .. 30
The Always Firing Neuron Model .. 31
The Hebbian Synapse .. 31
Adding Timing (Refractory & Propagation Delays) 34
Short-Cut Models .. 36
Differences between Brain Simulator and biological neurons 37
Video Links .. 41

Chapter 3: AI is Like Your Brain: DEBUNKED 43
Neurons ... 44
Synapses .. 48

Backpropagation ... 50
Summary ... 51
Video Links .. 52

Chapter 4: Applications of Neurons ... 53
Digital Logic in Neurons ... 53
Frequency/Rate Detection .. 56
Four Memory Mechanisms ... 59
Axon Delays ... 63
Video Links .. 65

Chapter 5: Networks .. 67
What’s in a Network File ... 68
The Clipboard .. 71
List of Current Networks (v1.0) ... 71

Chapter 6: Modules .. 73
Using Modules for Interfaces to the World 76
Using Modules for Computational Efficiency 76
Using Modules for Functions That are Difficult in Neurons 77
List of Current Modules (v1.0)... 78

Chapter 7: The User Interface .. 83
Overall Layout ... 83
Controlling Network Files .. 84
Controlling the Neuron Display ... 88
Controlling the Neuron Engine .. 92
Editing Networks ... 94
Synapses .. 98
Clipboard ... 99
Other Selection Functions ... 103
Firing History ... 104
Multiple Servers .. 106
Keyboard Shortcut Summary .. 107
Help and Support .. 107
Video Links .. 108

Chapter 8: The Programming Interface 109
The Neuron Engine interface .. 109
Adding a New Neuron or Synapse Model 110

Preface: Computers I Have Known 3

The Module Interface .. 111
Are you Cheating? The Limits of Plausibility 113

Chapter 9: The BasicNeurons Network .. 115
Purpose: .. 115
Things to Try: ... 120
Build Your Own Network: Error! Bookmark not defined.
Current State of Development: ... 120

Chapter 10 The Hebbian Synapses Network 123
Purpose: .. 123
The Complexity of Synapse Plasticity: 124
Things to try: ... 124
Current state of development:.. 129

Chapter 11: The Universal Knowledge Store 131
A Brief Introduction to Knowledge in Neurons 131
The NeuralGraph ... 141
Enter the Universal Knowledge Store (UKS) 143
The UKS and AGI .. 148
The UKS Dialog .. 150
Summary and Future Development 150
Video Links .. 152

Chapter 12: The Simulator, Mental Model, and Planning 153
The Simulator .. 153
The Internal Mental Model ... 157
Imagination ... 159
Planning ... 161
Application 1: Vision, Associating Words and Objects 161
Application 2: Maze / Learning by Trial and Error 163
Video Links .. 166

Chapter 13: Brain Simulator Performance on Multicore and
Multiserver Systems .. 169

Background ... 170
The Simplest Neural Algorithm ... 175
Performance in a Multicore Environment 177
Conclusions for Server Configuration.................................... 180

Performance in a Multi-Computer Environment 181
Discussion .. 183
Simulating the Entire Neocortex ... 184
Video Links .. 186

Chapter 14: Future Development .. 187
Glossary .. 189
Index 193
About the Author ... 196

1

1

Preface:
Computers I Have Known

When I was a senior in high school, one of the math teachers
wangled a gifted-students grant and ran an after-school class in
computer programming. He’d taken a course the previous semester
so had at least a few months’ head start on his students, there were,
perhaps, a dozen of us. The grant included an allotment of computer
time on the University’s new IBM 360. Computer time was charged
by the second and we were allowed to submit card-decks which
would be run overnight and receive printouts in the morning. The
teacher would do this once a week…consider the impossibility
waiting a week for a typo to be flagged so you could correct it and
resubmit the deck.

Also, in my senior year, I was part of a program which allowed
me to take one class at the University. While most of my cohorts in
the program were taking Western Civ, I signed up for Physics 4 (for
majors). Since I was driving out to the University four days a week,
and my father’s faculty parking permit was clear across the campus
from the physics lecture hall, I was nominated to detour through the
basement computer facility and deliver the cards and pick up the
printouts whenever I could. This also gave me the ability to spend
more time punching up program card decks.

At that time, the language of choice for scientific programming
was FORTRAN while for business it was COBOL—we only learned
FORTRAN. There was a student-version of FORTRAN from the
University of Waterloo called WATFOR which ran on the 360 and
kept us on the straight and narrow. The more generic FORTRAN IV
was more powerful but less forgiving, powerful enough that little
errors could require a complete system restart. It wasn’t too long

2 Brain Simulator II: The Guide for Creating AGI

before one of the enterprising students realized that he could insert
Job Control Language cards into the program deck which would
terminate WATFOR and fire up FORTRAN IV and then request tapes
to be loaded or get access to disk drives and on and on, and the
computer operator would dutifully comply because they didn’t
really have a way of knowing where the requests were coming from.

After these shenanigans, we were on the lookout for alternative
computer resources and we discovered the IBM 1130 in the physics
department. Time on that computer wasn’t charged anywhere as far
as we could tell and as long as advanced physics students weren’t
around, we could do whatever we liked.

The school district had an IBM 1401 which was used to process
grades etc. and we had a tour and got the manager to let us use it in
slack time. It was a few refrigerator-sized cabinets and had an add-
on washing-machine which had an additional 4K of memory. It had
a FORTRAN II compiler which was so slow we only used it once. It
took 15 minutes to compile one of our simple card-decks.

My success in the physics class allowed me to transfer to UC Davis
which, at the time, was the most popular campus in the popular UC
system. The main computer there was a Burroughs 6700 which had
Remote Access! You didn’t have to work with card decks, you could
write your program at a terminal and it might run only a few minutes
later. With each class which required computer work, I’d get an
account with a limited amount of computer time. As I was never
meticulous enough to get programs to run the first time, once again,
I had to hunt up addition computer resources.

The Electrical Engineering Department had a Xerox Sigma 7
computer and the department chair was using it to build an array
processor, the forerunner of todays GPU graphics chips. Once again,
if I was willing to work around everyone else’s schedule, I could use
the machine as much as I liked. I recall one of the early assignments
was a version of the now-famous Travelling Salesman problem with
the objective of finding the most efficient route for visiting a number
of destinations. The problem is now famous because it is an example
of an intractable problem where the required number of
computations goes up as some power of the number of candidate
destinations.

Preface: Computers I Have Known 3

The Sigma computer lab was shared by two analog computers.
These were programmed by plugging wires into a patch panel and
could solve some classes of differential equations among other
things. Within a few years, analog computers were completely
obsolete because it became possible to simulate the analog
computer faster and more accurately on a digital computer.

Midway through my first quarter at Davis, my roommate struck
gold (or perhaps copper). A few years earlier, all of the telephone
switching systems in the dorms had been replaced and the racks of
cast-off telephone relays were languishing in a barn (Davis had a big
Ag school) where they hadn’t been able to interest a scrap dealer to
recycle them. We took the relays over to Electrical Engineering and
got independent study credit for building a computer out of them.
After months of soldering, the thing clattered away and could add
and subtract in a rack about the size of a tall bookcase.

The following year, we acquired a teletype and a paper-tape
reader/punch and interfaced them so the relay computer could
clatter away in two desk-sized racks and output messages. The
problem was that the teletype needed pulses about 8ms long while
the telephone relays weren’t able to do anything in less than 12ms.
To make an 8 ms pulse with 12 ms relays, you can’t speed them up
but you can slow them down. You start the pulse with a 12 ms relay
and end it with on which has been slowed down to 20 ms. Turns out
that you can make arbitrarily short pulses with arbitrarily slow
devices—but it takes a lot of relays.

Now, time-travel into the present where I’m studying how the
human brain works and speculating on why over 65% of your brain
is involved in controlling your body while less than 20% is involved
in thinking. The answer is the same as for the telephone relays,
neurons are slow relative to the signals your body needs for quick
actions. So, it takes a lot of neurons.

In my senior year of college, I took a graduate seminar in
computer graphics and created a drawing system as the class project
but computer resources were still an issue. We were given a small
account for the course but it wasn’t nearly enough. On the upside, to
encourage general student computer use, every student was given a
$10 account to access the central computer. Many students had no
interest so I went down the hallway in the dorm, knocking on doors,

4 Brain Simulator II: The Guide for Creating AGI

and getting friends and neighbors to give me the username and
password for their gratis accounts. $10 wasn’t enough to accomplish
much but there was a quirk in the Burroughs operating system; it
only checked your available account balance when you logged in. So
armed with a page of accounts, I could go to the terminal room, log
in, and use a terminal until I got too sleepy to continue. If the central
system crashed, I’d need to get out a fresh account because each $10
account would burn through in less than an hour of connect time. I
got an A on the project.

When I graduated, I had plenty of job offers because EE grads
were in short supply. Said I to myself, “I can get a job any time,” so I
turned them all down and started my own company to do CAD. Even
minicomputers were expensive and the idea was that if the graphics
were performed on a workstation microprocessor, the
minicomputer could be shared among many graphics terminals and
still give snappy performance.

Graphics terminals with embedded processors were beastly
expensive ($20K) but I could buy the graphics display for $3K and
build my own processor. The first prototype was built on an IMSAI
kit with an 8080 CPU programmed in Assembly Language. That CPU
could add and move data around but if you needed to multiply, you
needed to write your own program. Graphics displays require a lot
of multiplication.

For storage, in addition to 32K of RAM, I interfaced a floppy disk
which I could do because I’d been freelancing with a company which
made disk controllers and also the custom 8X300 microcomputer
which controlled them. The floppy drives were about the same
speed and capacity as the hard drive on the IBM 1130 of five years
earlier.

For a central computer, we leased an Interdata 7/32 which was a
clone of the IBM 360. Interdata was chosen initially because they had
a compiler which would allow multiple users to run the same
program without having multiple copies of the entire program. This
is the same idea used by today’s .DLL which every modern program
uses. As we entered into various marketing arrangements with
computer vendors, out computer room filled with a variety of
additional computers: Perkin Elmer, A DEC VAX/750, and computer
from Harris and others.

Preface: Computers I Have Known 5

On the microprocessor front, IBM came out with the original PC
and we bought one for home. It had dual floppy drives, 640K of RAM
and a monochrome screen with a green phosphor. These were 5¼“
floppies while we were still using the 7” floppies for the smart
graphics terminals at work. The lack of a hard drive made the
machine close to unusable, so I eventually replaced one of the floppy
drives with a 5Mb hard drive.

After this, there came a series of progressively more powerful
desktop machines. In 1988, I got the FORTRAN compiler for MS-DOS
and wrote the original Brain Simulator. It worked within the 640K
RAM limit and so would only support 1,200 neurons as compared
with the current implementation which supports billions. It could
process the neuron array a few times per second which is at least
within a few orders of magnitude of the speed of the biological
neuron which and spike 250 times per second.

Working on my master’s degree, I took a course in parallel
processing. I don’t recall the brand of computer, but it had 16 PC-
equivalent processor boards. I implemented the Brain Simulator and
a few other programs in parallel, experience which has stood me in
good stead to this day. The Brain Simulator II works seamlessly
across the multiple cores of today’s CPUs and can extend via a
network to any number of physical machines.

Windows 3 came out and I got a copy. It was unreliable and slow
but sometimes worked. Then I got a contract in Silicon Valley
working on a Windows application and it completely changed my
point of view. Instead of being concerned about the unreliability, I
was impressed than anything worked at all. The early Windows
releases were based on the assumption that applications would be
cooperative and well-behaved. Of course, programs are NOT bug-
free, and the slightest problem in any app could bring down the
entire system, leading to the infamous “Blue Screen of Death.” When
Windows NT was developed, it was managed by the architect of the
VAX/750 OS, VMS, which was way ahead of its time, and he knew
what he was doing so NT was a reasonably stable and reliable
system. Much of it survives in today’s versions of Windows.

Windows 95 was the last of the non-NT lineage and I was called
into Microsoft to help with applications to give Windows 95 users
something useful to do. This was concurrent with the emergence of

6 Brain Simulator II: The Guide for Creating AGI

the Internet and Microsoft figured out, at the last minute, that
content and a browser were as important as an application on a local
machine. So, they invented MSN, the Microsoft Network, to host a
number of useful applications. These included Expedia and the news
site I worked on which was started as MSN News, then became a
joint venture with NBC dubbed MSNBC, and is now the website of
NBC News. Over the two years I worked there, it was the largest
news site on the web and we celebrated when we exceeded a million
unique visitors in a day.

Large websites like MSNBC.com are distributed across an array
of servers and the interesting technical problem was how can you
build a large site across numerous servers and not break all the page
links whenever you updated the site because the updates would
necessarily arrive at different servers at slightly different times. We
wanted to update the site any time whenever a news story broke so
you can imagine that a user who viewed a page from one server,
followed a link which landed on a different server, you’d like to have
that link go somewhere useful even if a site update had occurred in
the interim. In those days, we had to develop systems just to get new
content onto a server. Whew!

After MSNBC, I returned to neurological testing at Cadwell. I’d
previously written software for the first paperless EEG system, for
measuring brainwaves. It was under DOS and we were still rolling
our own network software so that you could record an EEG on one
system and view it quickly on another. Once again graphics
performance had been an issue and I wrote the actual waveform
display code in low-level assembly language. The neurological test
development gave me great insight into the functionality of neurons
which I’ve incorporated into the current Brain Simulator software.

Today, I sit in front of a three-screen system with 64 cores and
oodles of RAM. This CPU can execute up to 3 billion instructions in
the 12 ms it took for one of those telephone relays to switch. Today’s
CPU is about ten million times faster than the 8080s we used for our
first graphics terminals. These kinds of numbers are
incomprehensible. If you could walk 10 millions times faster, you
could walk around the world in about two seconds. If your brain
were 10 million times faster, you could have a whole lifetime’s
experience in a few minutes. If you could do that, what would you do

Preface: Computers I Have Known 7

with the rest of your lifetime? That’s the type of question I’m
working on today with the Brain Simulator. There’s reason to think
that the coming 50 years will bring the same factors of computer
speed as the past 50 and the capabilities of such machines is beyond
imagination.

9

Introduction
What makes the Brain Simulator II Unique?

Brain Simulator II is a free, open-source software project aimed at
creating Artificial General Intelligence (AGI). Many important
features set it apart from other Artificial Intelligence software:
1. The AGI Strategy. With the primary assumption that no one

knows specifically how to create AGI, the Brain Simulator
implements an experimental platform with a general AGI model
which is easy to revise. Several spiking neuron models based on
biological neurons combine with software “Modules” to create
any desired functionality for rapid experimentation.

2. The User Interface. The graphical display of neurons and Modules
lets users explore and modify the internal workings of the
Network in real time.

3. The Powerful Spiking Neuron Engine. Tested with a billion neurons,
the Brain Simulator can process up to 2.5 billion synapses per
second on a desktop computer. Networks can also be distributed
across a LAN with estimates of neocortex equivalence with only
160 servers.

4. Software Modules and Applications. To speed AGI development,
over 50 Modules perform a variety of AI tasks. Combined with
the Neuron Engine, applications already demonstrate vision,
mobility, internal modeling, language, and planning.

The Brain Simulator implements an artificial entity named
“Sallie” who lives in a simulated world and can integrate input from
multiple senses. She can recognize objects with binocular vision and
associate them with words she hears, plan a sequence of actions, and
manipulate objects to achieve a goal. As she advances to
understanding her world, interfaces already exist for cameras,
microphones, and robotic control to bring AGI to life.

About the Brain Simulator II Project

This book is about The Brain Simulator II, a free, open-source
software project aimed at creating an end-to-end Artificial General
Intelligence (AGI) system. AGI is a loosely defined concept meaning

10 Brain Simulator II: The Guide for Creating AGI

computer systems can respond in the same ways that as intelligent
humans across a broad spectrum of situations. This contrasts with
Artificial Intelligence (AI), which can often exceed human abilities
but only in very limited situations (also called “narrow” AI).

In contrast with AGI, narrow AI performs poorly in the basic
abilities common to any three-year-old. Just playing with blocks
implies an understanding that physical objects exist and persist even
when you can’t see them, an understanding of gravity and the
fundamental physics of solid objects, and a basic understanding of
cause and effect and the passage of time—all absent from the typical
AI.

The Brain Simulator II and its approach to AGI are significantly
different from typical AI approaches. It is based on the reasoning
that since we don’t know precisely how AGI will work, and since our
only AGI model today is the human brain, that studying brain
functions and building biologically plausible approaches will lead to
a quicker development of AGI.

My recent book, Will Computers Revolt?, discusses the potential
dangers of AGI and how we can mitigate them. The fact that such a
discussion is absent from this book is in no way an indication that
AGI won’t be dangerous or that caution is unnecessary. If AGI danger
is your primary concern, I suggest you read that book instead. But
this book does contribute to that conversation by showing methods,
available today, which will contribute to AGI—meaning that AGI is
not some far-off fantasy but will be upon us sooner than most people
think. Further, the basic structure of AGI, introduced here, illustrates
where AGI can be controlled and limited for the benefit of mankind
rather than our demise.

Who Should Read this Book?

You will find this Brain Simulator II book interesting if you are:
• Interested in the capabilities and limitations of neurons
• Interested in Artificial General Intelligence
• A neuroscientist
• A cognitive scientist
• Interested in learning about spiking AI software
• A programmer interested in Artificial General Intelligence (AGI).

Introduction 11

In addition to the explanations in this book, I have made
numerous videos (available on YouTube) that address individual
features of the project. I have included links at the end of each
chapter to the relevant videos.

You will not find The Brain Simulator II interesting if you are
looking for explanations of traditional Artificial Intelligence
methods. The reason? The point of the Brain Simulator is to
experiment with different ways of approaching Artificial General
Intelligence. While there are numerous excellent books and
software which explain and support Deep Learning and related AI
approaches, in the intervening 40+ years since their introduction,
traditional AI methods have produced interesting results but have
not made much progress toward the common-sense intelligence
enjoyed by any three-year-old.

The Structure of this Book

The book starts off with the development philosophy and the next
six chapters (2-7) describe the Brain Simulator in greater detail,
beginning with Neuron Models in Chapter 2. The Brain Simulator
implements an array of millions or billions of simple neurons which
can be computed in real time on a powerful desktop computer. Each
neuron’s behavior is dictated by the selection of one of several
neuron simulation models. This chapter describes each of the
models currently implemented and describes why you might want
to use it. The internal code of a neuron model is not particularly
complex and additional models can be added to the simulator as
needed.

The distinction between biological neurons and traditional AI is
highlighted in Chapter 3, “AI is Like Your Brain: DEBUNKED.” This
chapter shows how traditional AI techniques cannot possibly
represent biological neurons because the underlying ideas are not
possible in a biologically plausible world. Further, the simulator is
designed around some features which are unique to biological
neurons. While it would be possible to implement the idealized
neurons of traditional Artificial Neural Networks (ANNs), such an
implementation has not been pursued here because it would not be
particularly efficient or enlightening.

12 Brain Simulator II: The Guide for Creating AGI

For most people, it is not intuitively obvious how simple neurons
can be harnessed together to perform useful functions. Chapter 4,
“Applications of Neurons,” shows several relatively simple
combinations of neurons that work together to perform digital logic
functions and several types of memory.

Arrays of neurons with their connections are stored in files called
“Networks” which are described in Chapter 5. Within the Brain
Simulator, information from one network can be included in other
networks. This means that if you create some useful functionality in
a small number of neurons, replicating this functionality many times
is a fairly simple prospect. Most of the networks included with The
Brain Simulator II perform relatively simple functions; the idea
being that general intelligence will be created from millions of
instances of a small number of unique, but fairly simple, neural
circuits. This chapter includes a list of the Networks which are
included with the program at the time of writing.

“Modules” form a key component of The Brain Simulator II, as
explained in Chapter 6. It doesn’t take much experimentation to
learn that many functions which we presume to be simple are, in
fact, difficult to implement in biological neurons. Enter the Module,
which allows programmers to create custom computer code for any
cluster of neurons.

This allows for three valuable uses: 1) Modules can implement
the “rules” which govern the creation of connections for vast arrays
of neurons; 2) Modules can be vastly more efficient than neurons for
certain processes; and 3) Modules can be used to implement
functionality for which neural implementations are yet to be
determined. As an example: we don’t know how binocular depth
perception works in the brain, but within a module, we can use
trigonometry to perform similar functionality. The chapter includes
a list of the Modules which are included with the system at the time
of writing.

Unique to The Brain Simulator II is the user interface as described
in Chapter 7. You can examine and modify a neuron network while
it is operating to design useful functionality. You can add or modify
synapses and neuron parameters on-the-fly. And once created,
neural circuits can be repeated, moved, saved, edited…anything you
need.

Introduction 13

Chapter 8 gives an overview of the programming interface. It
explains how you might approach writing your own neuron models
or Modules but details are left to the source code. Also, as the Brain
Simulator is an open-source project, programmers are encouraged
to add capabilities to the underlying user interface and Neuron
Engine.

Chapter 9 explains some of the basic neuron networks included
with the download. Highlights include several ways neurons can be
configured as digital circuits, different ways that neurons can store
information, and some of the capabilities and limitations of the
various neuron models. Chapter 10 expands on this idea showing
how variable synapse weights can expand the scope of neural
circuitry.

The Universal Knowledge Store (UKS) is a set of Modules which
can create relationships between disparate types of information.
Chapter 11 explains how classic graph structures can be
implemented in neurons (the genesis of the Modules). Chapter 12
then demonstrates how the UKS can be used with sample
applications: 1) learning words associated with visual input and 2)
navigating mazes.

One presumption of the Brain Simulator is that large numbers of
neurons will be needed. Accordingly, the neuron models of the
simulator have been optimized to work in multi-core and networked
multi-computer implementations. Chapter 13 details the
performance of the Brain Simulator in various configurations and
projects the number of servers needed to emulate the entire human
neocortex. Finally, Chapter 14 describes the current state of
development and directions for future development.

So, the Brain Simulator is offered as an alternative. Accepting that
no one knows precisely how to create a general intelligence system,
the Brain Simulator is an experimental platform that begins with
biological plausibility but enables shortcuts and extensions which
can take advantage of the capabilities of today’s CPUs.

Getting the Brain Simulator

You can download an executable free at http://brainsim.org. The
download includes network files that demonstrate the features

http://brainsim.org/

14 Brain Simulator II: The Guide for Creating AGI

described later in this book. You can do a lot with the Brain Simulator
without any programming experience. The Brain Simulator runs on
Windows 10, although some work has begun to create a Linux
version.

If you are a programmer, you can also download the source code
to glean more about how neurons and the simulator work. It is
available at: https://github.com/FutureAIGuru/BrainSimII. Working
with the source code to create your own modules or extend the
neuron models requires Visual Studio; you can download the
Community Edition free from Microsoft at:
https://visualstudio.microsoft.com/downloads/.

If you are knowledgeable about the workings of today’s Artificial
Intelligence, you may be frustrated to discover that few of today’s AI
algorithms and constructs are included in the Brain Simulator. This
is not because of some oversight but because today’s AI has very
little to do with the way a biological brain works. The algorithms of
today’s Artificial Neural Networks are based on a continuous neuron
model which has little to do with actual spiking neurons. The
primary backpropagation algorithm has no biological analog
whatsoever. Both backpropagation and continuous neuron models
could be implemented within the framework of the Brain Simulator’s
neuron model and module structure but these have been extensively
explored on other platforms.

The traditional AI approaches of today were developed into
ANNs decades ago. If those algorithms had led to general intelligence
in the intervening forty years, we would have discovered a different
form of intelligence from the brain’s. Having not achieved that goal,
the Brain Simulator is an effort to return to the biologically inspired
roots of AI.

Video Links

Many chapters are followed by links to related videos I have created.
For a listing of all the related videos, go to: http://futureai.guru/videos

“Brain Simulator II Overview”
http://futureai.guru/videos?id=141

https://github.com/FutureAIGuru/BrainSimII
https://visualstudio.microsoft.com/downloads/
http://futureai.guru/videos
http://futureai.guru/videos?id=141

15

Chapter 1:
Brain Simulator II Strategy

OR
How to Create AGI

The Brain Simulator II contains innovative ideas toward creating
Artificial General Intelligence (AGI). This is an ongoing research
project. So rather than waiting for a "finished" version, I present the
current state of development. I welcome suggestions, comments,
and participation.

The Brain Simulator II is a PROJECT, not a PRODUCT. The project is
FREE and OPEN SOURCE. Overall, the project is implementing the
software architecture described in the book, Will Computers Revolt?
and briefly described in this chapter.

This description is accurate as of the v1.0 release of The Brain
Simulator II. The user interface and the Neuron Engine are relatively
stable while the library of networks and software modules will likely
change substantially and expand on a continuing basis.

Development Philosophy

We don’t presently know precisely how to create Artificial General
Intelligence. I’ll describe many ideas in this chapter but their
implementation is not well defined. Since we don’t have all the
answers, the Brain Simulator is an experimental platform. It’s easy
to try out new ideas and learn where improvements are needed. The
Brain Simulator II allows experimentation with different neuron
algorithms, different network designs, and higher-level Module
software.

The source code download includes many features which are
previews of future abilities, experiments that have been superseded,

16 Brain Simulator II: The Guide for Creating AGI

and ideas that are still under development. The development
technique follows the AGILE software development process of
creating solutions for the simplest cases first. After these work,
algorithms are generalized to handle more cases.

Productized software is certainly a possibility. But with an
overall objective of creating AGI, there is no reason to expect that the
project will be “complete” in the foreseeable future. Accordingly, it
is written in such a way that there is no limit to the features which
can be easily added.

The project adopts the incremental development aspect of AGILE
software engineering. That is, it is important to develop software for
a single use-case before addressing the myriad of use cases that an
AGI is destined to encounter. This means there is already a single
end-to-end path that could represent the mechanism of an AGI but
with just a few use-cases.

The Reasoning Behind the Brain Simulator

You have to start somewhere! If we wait for a complete
understanding, with robust mathematical models of AGI, we may
never start. The Brain Simulator is based on reasoning about how
general intelligence must work along with a recognition of the
limitations of our knowledge.
1. No one knows, precisely, how to create AGI, hence a more

experimental and iterative development approach.
2. Human intelligence and thinking occur in the brain and more

specifically, the neocortex. This sets some limits on the size and
complexity of the AGI problem.

3. Intelligence occurs in neurons as a result of their digital
(spiking) function. This directs the Brain Simulator into areas of
development outside of AI’s classic perceptron/-
backpropagation approach.

4. Intelligence has evolved since early man but the brain’s
structure has not. Rather than beginning with chess-playing,
mathematics, or immense language skills, this project starts with
basic techniques of finding one’s way or understanding cause
and effect.

5. AGI is not as big a development task as most think.

Brain Simulator Strategy OR How to Create AGI 17

a. DNA defines initial brain structure but not much DNA data
is devoted to neocortex formation. Therefore, the brain
(and an AGI) must be possible with repeating patterns of
simpler neural circuits or simple rules which govern
synapse creation.

b. Brain capacity is bounded by neuron counts.
c. Counts of sensory and motor nerves bound the incoming

and outgoing data rates.
d. These limitations set a maximum complexity for the brain

and hence for an AGI.
6. AGI Requires Robotics. Without interaction with the real world,

artificial intelligence will always be narrow. The real world is so
variable and complex that simulators can speed development.

7. AGI can be created from existing hardware.
a. Enough performance is available from today’s hardware.
b. Some subset of human performance could qualify as AGI.

8. AGI will not be like human intelligence. Human intelligence
develops within the context of human goals, emotions, and
instincts, which would form a poor basis for AGI.

Some of the reasoning above is currently subject to dispute and
may eventually prove to be in error. But that’s the point. The
development of the Brain Simulator can help settle philosophical
disputes one way or another. At the same time, the structure of the
Brain Simulator is flexible enough to adapt to new information as it
becomes available.

The Intelligence Model

The Brain Simulator II implements a simulated entity named “Sallie.”
Although it’s fun to refer to any artificial entity by name and ascribe
various intelligent attributes, Sallie has nowhere near the scope of
capabilities needed for AGI. The following capabilities are necessary
for AGI and may prove to be sufficient as well. Sallie can do all of the
following things but in a limited way:

1. Sense her environment (input).
2. Act on her environment (output).
3. Have internal rules or goals.
4. Analyze inputs to make sense of her environment.

18 Brain Simulator II: The Guide for Creating AGI

5. Remember (learn) combinations of inputs and actions and
their qualitative results.

6. Internally model her environment in three dimensions.
7. Simulate possible actions and select for positive predicted

results.
8. Perform these actions with sufficient speed and magnitude to

respond to real-world conditions in useful timeframes.

Each of these has been implemented to some extent. For example,
portions of the project can sense inputs from cameras and
microphones and control a minimal robot, so Sallie can accept voice
commands and “see” in some minimal sense. To date, however,
Brain Simulator development has been primarily based on a
simulated world…the real world just has too many variables and is
not repeatable. The initial implementation uses a two-dimensional
environment, although a simulated three-dimensional environment
has been prototyped.

This block diagram, from Will Computers Revolt? shows the major building
blocks for a generally intelligent entity to implement the eight necessary
components of intelligent behavior. It includes an Object Store (implemented as
the Universal Knowledge Store explained in Chapter 10), input and output
processing, and a 3D model of the entity’s surroundings.

To further illustrate the simplifications, consider that Sallie can
only recognize two types of physical object. She can remember these
in her internal memory so she knows where objects are, even when
she can’t see them. She can remember landmarks and use that

Brain Simulator Strategy OR How to Create AGI 19

memory to plan her route to goals within a maze. She can act on her
simulated environment by moving objects and, in one
demonstration, can move an object to achieve a goal. She can learn
to associate words with the objects she knows.

This is what is meant by an end-to-end prototype with just a few
use-cases. The system can perform all the functions of AGI but only
on a tiny number of data elements. Consider that before you learned
to read, this page would have appeared as a mishmash of symbols—
like looking at a page of Chinese characters (if you don’t read
Chinese). Sallie’s perception is like that. She can see everything but
only a few things make sense.

Many of the functions are hard-coded. For example, Sallie can
learn to navigate a maze but she cannot learn about mazes because
the maze-learning process is coded directly. The key is that the
process of creating the software leads to learning about AGI. The
maze software relies on the internal mental model and the storage
of landmarks. Each landmark is a situation in the world at which
Sallie must make a decision. She can recall the situation, the action
she took, and the outcome. This concept of triples can be generalized
to form the basis of planning and reinforcement learning for a much
more complex AGI.

The Neuron Engine, User Interface, and Modules

To establish a bit of terminology, the Brain Simulator supports a vast
array of simulated neurons connected by synapses. The function of
simulating neurons and synapses is handled by the “Neuron Engine.”
The Brain Simulator user interface displays the neuron array (or
some portion of it) so you can see what’s going on and view or edit
the pattern of connections. If the Neuron Engine is implemented on
a different computer from the User interface, it uses an
implementation called the “Neuron Server”—it’s the same Neuron
Engine, but with the added ability to handle connections and
interfaces that cross machine boundaries on a network.

“Modules” are software shortcuts. A cluster of neurons can be
considered a Module and neurons are then also under the control of
the Module’s software. Modules can be useful for input or output.
For example, one module takes input from a video camera and fires
its neurons as appropriate to represent the image. Other modules

20 Brain Simulator II: The Guide for Creating AGI

are useful for computation. For depth perception, for example, we
know your brain can merge signals from your two eyes and estimate
the distance to an object. Rather than using neurons to perform this
action, the Module uses trigonometry and all the power of the
computer to perform a similar task more easily.

What, no Backpropagation?

The Brain Simulator makes no effort to compete with existing
software packages which implement classic ANN algorithms. The
intent is to break new ground with new algorithms. The thrust is to
stay closer to biological plausibility since the human brain is the only
working AGI model we have, at present.

After the following chapter describes the neuron models used in
the Brain Simulator, I will return to this topic with a comparison of
basic Neural Network algorithms vs. how your brain works in
Chapter 3, AI is like your brain: DEBUNKED.

Video Links

“How to Create AGI”
http://futureai.guru/videos?id=127

“Brain Simulator II Presentation at AGI-20”
http://futureai.guru/videos?id=128

“Brain Simulator II Overview”
http://futureai.guru/videos?id=141

“How your Brain Works …in 5 Minutes”
http://futureai.guru/videos?id=109

http://futureai.guru/videos?id=127
http://futureai.guru/videos?id=128
http://futureai.guru/videos?id=141
http://futureai.guru/videos?id=109

21

Chapter 2:
Modeling Neurons and

Synapses
The Brain Simulator operates on an array of simulated neurons
connected by simulated synapses. This chapter focuses on the
function of neurons and synapses while Chapter 4 describes useful
patterns of synapses which we’ll call a “Network.”

You’ll get the most out of the Brain Simulator with a little
background about how biological neurons function. This chapter is
just an overview because biological neurons are immensely complex
and variable. So I’ll focus on a few principles and start with the
simplest models.

The problem of understanding neurons is the same as with many
biological systems—the chemistry which makes them develop and
function is complex and may be more complex than is necessary to
replicate with artificial means. To build an “artificial brain”, we need
to select which capabilities of neurons are necessary to the thinking
process and which might be extraneous…necessary for the
biological brain but not essential for thinking.

Consider creating an artificial heart…it’s a pump. The individual
cells of the biological heart work together in a coordinated way to
pump blood. At the same time, these cells “know” how to grow
within an embryo to create a heart and how to replace themselves if
needed. Cells are also little metabolic machines that can convert the
simple sugars and oxygen within the blood into the energy for
contractions we know as a heartbeat. When we create an artificial
heart, we don’t worry about individual components of the pump
carrying the instructions for how to build the entire pump or how to
replace components when necessary. In the heart, it’s reasonably
clear that the pumping action can be separated from metabolism,
“manufacturing”, and “maintenance”.

22 Brain Simulator II: The Guide for Creating AGI

Neurons aren’t so clear-cut. Neurons have a basic spiking action
(which I’ll detail momentarily), but like the heart, they also carry the
mechanisms for developing and maintaining the brain. In the brain,
though, the structure of individual neurons may also contribute to
the thinking process. For example, which neurons contact one
another is clearly essential to thinking. On the other hand, there are
numerous types of neurotransmitters and synapses. Are these
necessary to the thinking process or only for brain development? In
addition to neurons, the brain contains glial cells which might
contribute to thinking or might only be there to guide and maintain
the brain’s structure. It’s hard to tell.

Neuroscientists have made great strides in modeling the
complexity of neural function and several detailed neural modeling
packages are available which simulate neurons near the molecular
level. There are two problems inherent in this approach: First, a
detailed computer model of a neuron contains numerous
parameters and is necessarily slower, limiting the number of
neurons which can be simulated at any given time. Second, with a
focus on the detail of individual neurons, the overall functionality of
the brain might be ignored. Similarly, a focus on an individual heart
muscle cell sheds very little light on the overall function of the heart.

The Brain Simulator takes more of a “top-down” approach. Let’s
start with the simplest possible neuron models and see what can be
produced with them. It’s this approach that leads to the ability to
simulate a billion neurons on a desktop computer and demonstrate
how even larger networks can be simulated across multiple servers
on a LAN.

When considering whether to add a capability to the neuron
model, I evaluate how much computational power will be added to
the simulation. For example, recent neuroscience experiments have
shown that portions of a neuron can perform some basic
computations. But those computations are the equivalent of adding
intermediate neurons to the network—so it doesn’t add anything to
the overall capabilities of the simulator.

The Biological Neuron

To begin with the structure of the biological neuron, we’ll start with
the cell body, which is the center of the action. It has numerous

Modeling Neurons and Synapses 23

appendages, the “Dendrites,” which can accept incoming signals
from other neurons. It has a single long axon which branches at its
destination to numerous synapses that connect to other neurons.
The axon may be as long as needed to reach the desired destination
and, as nerve cells within your body are a form of neuron, they may
be over a meter in length. Within the brain, the average axon length
is about 10 mm.

Diagram of a neuron showing “Inputs” and “Outputs,” which are synapses and
may count many thousands. The myelin sheath on the axon is only present on
long axons, which may be 100mm long in the neocortex so this drawing is not
to scale by several orders of magnitude. Shorter axons in the brain are not
“myelinated,” which makes them slower but more densely packed and still often
hundreds of times longer than the cell body diameter. Diagram by Egm4313.s12
at English Wikipedia / CC BY-SA (https://creativecommons.org/licenses/by-
sa/3.0)

The primary observable function of the neuron is to emit a spike
which can be measured as a voltage pulse. This occurs when the
internal charge exceeds a threshold—and that internal charge is
accumulated from incoming neurotransmitter ions from adjoining
neurons. The neuron has a measurable resting voltage. Incoming
signals from synapses affect the voltage, with excitatory synapses
increasing the voltage and inhibitory synapses decreasing it. When
the voltage exceeds the threshold, a spike is emitted. It travels down
the axon to the destination synapses, which contribute
neurotransmitter ions to their target neurons. After the spike is

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

24 Brain Simulator II: The Guide for Creating AGI

emitted, there is a “refractory period” during which all the
neurotransmitters return to their original state so the process can
repeat. During the refractory period, incoming signals are
essentially ignored.

From the diagram, we can observe that the time from the onset
of the spike to the end of the refractory period is about 4 ms. This
means that the maximum firing rate of a neuron is about once every
4 ms or 250 Hz.

This diagram of an idealized neural spike shows how the incoming signals
(ESPS—Excitatory postsynaptic potential) contribute to the membrane
potential. When the membrane potential reaches the threshold, the neuron
emits a spike and eventually returns to its resting potential for the process to
repeat. https://www.researchgate.net/profile/Juan_Pedro_Dominguez-
Morales/publication/329885401/figure/fig2/AS:707709062090765@1
545742397755/Diagram-of-a-spike-generated-by-a-neuron_W640.jpg

Relative to a computer, the neuron is slow! Slow! SLOW! During
the 4 ms of a neuron’s firing cycle, my 4 GHz computer can execute
16 million cycles on each of its 64 cores. Add to that, neural spikes
travel along the axon at a leisurely 2 mm/ms (walking speed). So a
signal on an average 10mm axon arrives at its destination 5 ms after
the spike is initiated at the cell body. The peak of the action potential
is about 1 ms after threshold detection, so the fastest-possible
signals through adjacent neurons (assuming no time for the axon
delay) will induce a 1 ms propagation delay per neuron.

https://www.researchgate.net/profile/Juan_Pedro_Dominguez-Morales/publication/329885401/figure/fig2/AS:707709062090765@1545742397755/Diagram-of-a-spike-generated-by-a-neuron_W640.jpg
https://www.researchgate.net/profile/Juan_Pedro_Dominguez-Morales/publication/329885401/figure/fig2/AS:707709062090765@1545742397755/Diagram-of-a-spike-generated-by-a-neuron_W640.jpg
https://www.researchgate.net/profile/Juan_Pedro_Dominguez-Morales/publication/329885401/figure/fig2/AS:707709062090765@1545742397755/Diagram-of-a-spike-generated-by-a-neuron_W640.jpg

Modeling Neurons and Synapses 25

The Integrate and Fire Model

The Brain Simulator simulates a vast array of neurons…how vast
depends on the machine and network limitations but it has been
tested with a billion neurons. Each neuron can have any number of
synapses connecting it to other neurons. Each neuron can be
referenced by its “index” (or “Id”) which is simply its position within
the array. The array is presented in the user interface as being
rectangular, implying row and column position relationships, but
this is a convenience for visualization. For performance reasons,
within the simulator, neurons are stored in a single, one-
dimensional array and so have a single numeric Id.

Each simulated neuron has one principal function, it spikes, and
two key features: 1) It carries an internal value and 2) a list of
synapses to which it is connected. Each synapse consists of the Id of
a target neuron and a weight. Both the neuron and the synapse carry
additional, lesser features that will be covered later.

The primary function of a neuron is to emit a spike dependent on
the inputs it receives. The way it “decides” to emit a spike depends
on the “model.” The Brain Simulator supports any number of models
and new ones can be added easily. We’ll start with the simplest,
Integrate and Fire (“IF”).

The Neuron Engine can evaluate every neuron just once in a
“cycle”. For now, we’ll assume that the cycle time is equal to the
refractory period (4 ms) and that all neuron firing is synchronized.
Later, I’ll explain how to relax this limitation for greater precision.

Considering the basic IF model, here is how the neurons work.
Each neuron is evaluated to determine if the internal value exceeds
a threshold. If it does, then the synapses list is processed and the
weight of each synapse is added to the internal value of the
corresponding target neuron. The synaptic weight can be positive or
negative, either contributing to (“excitatory”) or subtracting from
(“inhibitory”) the neuron’s internal charge.

26 Brain Simulator II: The Guide for Creating AGI

Illustrating the “Integrate and Fire” model. The randomly firing neurons “A” and
“B” are connected to neuron “O” with synapse weights of 0.25. In the diagram
above, whenever A or B spikes, you can see the internal charge of O increase
somewhat (the bottom line in the History window). On the fourth incoming
pulse, O reaches its threshold, emits a spike of its own, and resets its internal
charge to 0.0.

For convenience, the resting state of the neuron is defined as 0.0
and the threshold is defined as 1.0—these are different from the
actual voltages observed in biological neurons and are arbitrary
values since all other values within the system are scaled
accordingly. The internal value is represented by a floating-point
number. This is somewhat counter to the biological observation that
the internal value cannot represent very many different values
(covered in the “Differences” subsection later).

It is easy to see that a synapse with a weight of 1.0 is sufficient to
cause the target neuron to spike (in the absence of any other input).
To illustrate that the threshold is arbitrary, if the threshold were
defined as 2.0, then a synapse of weight 2.0 would be required to
cause a spike but everything else would work in exactly the same
way. Synapse weights are, likewise, floating-point numbers. Again,
experimentation with biological synapses shows they are limited to
as few as 100 discrete values. Because today’s computer has been
optimized for floating-point calculation, the performance cost of
using floating-point numbers is nominal. On the other hand, the
memory cost is significant. A single byte would be all that’s required
to represent a realistic charge value or synapse weight, while the
floating-point number requires four times the memory.

Modeling Neurons and Synapses 27

A synaptic weight of less than zero is inhibitory. Because synapse
weights in the Brain Simulator are floating-point numbers, the
weight can glide freely from excitatory to inhibitory and back again.
In biology, this is more difficult because such a synaptic sign change
requires the use of different neurotransmitters and neuroreceptors
involving different ionic charges.

Considering just a single input, you can see that for an incoming
synapse weight of 1, the output spiking frequency will match the
input. Every time the stimulating neuron spikes, the synapse
contributes enough charge to cause an outgoing spike.

 If the weight is between 0.5 and 1, then it will take two incoming
spikes to create an output spike. For example, with a weight of 0.8,
the first incoming spike will increase the internal charge to 0.8 and
the second will cause the internal charge to increase to 1.6 which
exceeds the 1.0 threshold, will cause a spike, and will reset the
internal charge to 0. With a weight between .33 and .5 it will take
three incoming spikes to cause an output spike…and so on.

The neuron is acting as a frequency divider. This illustrates an
important limitation of neurons (both biological and simulated).
Since there are no partial spikes, a neuron always requires an
integral number of spikes to reach its threshold (or exceed it). This
makes it impossible to process a repetitive signal from a single
neuron by considering its frequency as a floating-point number. The
most precise frequency processing is to divide the incoming
frequency by two—and not many stages of such division will result
in a signal which is too slow to be useful for thinking. There are ways
to circumvent this limitation with the use of multiple neurons as is
demonstrated in the “Basic Neurons” network.

Adding Leakage

The idealized neuron of the IF model will store its internal charge
value indefinitely. In the real world, charge leaks away at some rate,
and in neurons, leakage can be significant. This leads to an extension
to the model, Leaky Integrated and Fire (LIF).

28 Brain Simulator II: The Guide for Creating AGI

With the LIF model, incoming spikes still contribute to the internal charge of a
neuron but between incoming spikes, the charge “leaks” or decays away a little.
If the incoming spikes stop, the internal charge will gradually return to 0.0.

In the model, the leakage rate defines the fraction of charge which
is subtracted in each cycle. In the Brain Simulator, you can set the
leakage rate for individual neurons. If you set the leakage rate to 0,
then the LIF neuron acts as an IF neuron because there will be no
leakage. If you set the leakage rate to 1, then no charge is maintained
from one cycle to the next.

The leakage rate can be used as a “high-pass” filter in that if the incoming spike
frequency is high enough, O will spike periodically (left) but if it is lowered, O will
never spike (right).

In between, there is an interesting and useful circuit. You can see
that if the rate of incoming spikes combined with their synapse
weights exceeds the leak rate, the neuron charge will increase and
the neuron will eventually spike. If the incoming spike rate is less
than the leak rate, charge will be draining off as fast or faster than it

Modeling Neurons and Synapses 29

arrives and the neuron will never fire. This means that any neuron
using this model can act as a frequency-threshold detector. It will
only fire if the incoming frequency exceeds some given value
(dependent on the leak rate). Further, with the added frequency-
division described above, once the neuron begins spiking, its output
frequency will be proportional to the input frequency.

If the incoming spikes are connected by a synapse of weight 1, the
neuron will fire on every incoming spike, regardless of the leakage
rate and so it is no different from an IF neuron. If the incoming spike
is connected by a weight of 0.75, then the neuron will fire after two
spikes but ONLY if the second spike arrives soon enough that
leakage has not drawn the internal charge below 0.25. Above this
rate, the neuron will fire on every other incoming spike.

Randomness and Noise

The models presented so far create ordered, predictable results.
When we probe the brain and look at neural signals, there appears
to be disorder and randomness. To consider a conceptually simple
signal coming to the brain, think in terms of a signal coming in from
a single retinal cell that spikes faster with brighter light. Ideally, the
frequency of spiking would track nicely with brightness at a
particular point. Observation, though, shows a lot of “jitter” and only
the average spiking frequency over a longer period tracks well with
the intended signal. Whether this variability is noise or is additional
signal encoding is not known. There is an ongoing discussion about
whether this randomness is extraneous or essential to the thinking
process.

The spiking frequency of a biological neuron shows a considerable amount of
variability. This is most likely due to electronic or chemical “noise” and doesn’t
represent the signal.

Random Neurons
As the random character of neurons is not precisely known, the

Brain Simulator has made a first step by incorporating a “Random”
neuron model. Neurons with this model act as IF neurons except that

30 Brain Simulator II: The Guide for Creating AGI

in the absence of any stimulation, the neuron will fire at a random
interval with a given mean and standard deviation. The overall
frequency of random firing is governed by the mean. If the standard
deviation is set to 0, the neuron will fire at a constant rate given by
the mean. If the standard deviation is negative, the neuron will be
disabled. The Random neuron model is used internally to represent
always-firing neurons. A random neuron with a long mean will act
generally like an IF neuron except that it will occasionally emit a
random spike.

The spiking pattern of a random neuron with a mean of 5 and a standard
deviation of 2. Setting the standard deviation to 0 will cause the neuron to fire
at a constant rate.

The Burst Neuron

Some biological neurons appear to fire bursts rather than individual
spikes. Within the Brain Simulator, the “Burst” model performs a
similar function. There are two parameters, one of which governs
the number of spikes in the burst and the other the rate of spikes (in
cycles). In other respects, the Burst neuron model acts as an IF
neuron.

Modeling Neurons and Synapses 31

This timing diagram illustrates the burst neuron, O, driven by IF neuron A with a
synapse weight of 0.5. It takes two incoming spikes from A to cause O to fire a
burst. The number of spikes in the burst is set to 5 and the rate is set to 1 so the
burst fires at the maximum neuron firing rate.

The Always Firing Neuron Model

For convenience, this neuron model fires at a consistent rate every
n Neuron Engine cycles. The “Always” neuron model can be useful
for some digital circuit prototypes where continuous firing is
needed. In practice, it is the same as the Random model with a
standard deviation of zero.

The Hebbian Synapse

Thus far, the models have relied on synapses that have fixed weights
but there is ample evidence for synaptic plasticity. This opens the
door to the memory mechanism where information is stored in the
weights of synapses (described below).

This learning process was initially described by D. O. Hebb and is
also called Spike-timing-dependent plasticity. In general, if one
neuron has a synapse that targets another and it fires immediately
prior to the target neuron firing, we could assume that the first
neuron caused the firing of the second (or should have if it didn’t).
Therefore, the synapse weight should be increased; otherwise, the
weight should be decreased.

This is more generally called spike-timing-dependent plasticity
but I’ll continue to call it “Hebbian”. Based on the interspike timing,

32 Brain Simulator II: The Guide for Creating AGI

Within the Brain Simulator, only certain synapses are designated
as Hebbian. One can see that if the “control” synapses from A and B
were also Hebbian, things would be more complex. So, the structure
of a circuit has fixed-weight synapses and only “content” synapses
are plastic. For testing purposes, one can select an area of a network
and reset all the Hebbian synapses within that area without affecting
the fixed-weight synapses. This can be convenient for resetting
memory.

With a Hebbian synapse connecting “Clock” to “Out,” spiking on B inhibits Out
and causes the synapse to weaken. Spiking on A stimulates Out and causes the
synapse to strengthen. The approximate weight of the Hebbian synapse can be
inferred from the spiking rate of Out.

In the same way that the action of a neuron within the Brain
Simulator is governed by the “Model”, synapses, too, have a model
which selects their action. One specific model, “Fixed,” does not
allow for any plasticity and this is the default model for synapses.
Therefore, only certain synapses are designated as Hebbian. One can
see that if the “control” synapses from A and B were also Hebbian,
things would be more complex. So, the structure of a circuit typically
has fixed-weight synapses and only “content” synapses are plastic.
For testing purposes, one can select an area of a network and reset
all the Hebbian synapses within that area without affecting the fixed-
weight synapses. This can be convenient for resetting memory.

A precise formula for the amount of increase or decrease of
biological synapse weights is not known and within the Brain
Simulator is controlled by a lookup table which is subject to change.
The selection of the model simply selects the lookup table to use. As
of this writing, there are three weight control tables.

Modeling Neurons and Synapses 33

• Binary: simultaneous firing causes the synapse weight to
be set to 1. Firing the target without the source sets the
weight to 0.

• Hebbian1: Weights range from 0 to 1 such that all single
synapses are stable (see below).

• Hebbian2: Weights range from -1 to 1. Weights are varied
so pattern recognition is learned with an arbitrary
number of input spikes.

• Additional models are anticipated.

The weights in the Hebbian1 model are set so that fractional-
value weights of individual synapses will be relatively stable. That
is, a Hebbian Synapse with a weight of 0.25, for example, will remain
near its current weight. Since the 0.25 synapse will cause the target
to spike on only every 4th cycle, the weight increase on firing must
be four times the weight decrease when not firing for the synapse
weight to remain stable over time. This leads, overall, to synapse
weights which can increase faster than they can decrease. Note in
the illustration that the synapse weight is reduced with 8 spikes but
restored with only 5.

While the ratios of weight increases to decreases are dictated by
the desire for stable synapse weights, the absolute values are
dictated by the desire for weights to change as quickly as possible to
facilitate rapid learning. As currently implemented, a 0.0-weight
synapse can be brought to a weight of 1.0 with 11 spikes but
returning it to zero requires 33. Using a 4 ms neuron cycle time, this
means that it takes up to 44 ms to set a 0.0-weight synapse to an
arbitrary value. While this timing is plausible, note that it restricts
the synapse weight to only 11 discrete values. Increasing the
number of possible synapse weight values would require smaller
weight changes for each spike. This can be done by changing entries
in the lookup table but would result in correspondingly slower
learning rates.

Note also that even when attempting to set a synapse weight to
some precise value, there is no practical way, within the network, to
learn what the precise value is. A synapse weight of 0.5 will cause a
target neuron to spike on every other cycle—but so will a weight of
0.75 or 0.9. So you may observe that a neuron is firing every other

34 Brain Simulator II: The Guide for Creating AGI

cycle but this only gives a general indication of the aggregate
incoming synapse weight, never precise values.

Synapse weights do offer higher precision the smaller they are,
but, once again, this leads to a corresponding reduction in speed or
increase in complexity as it takes progressively more incoming
spikes to stimulate a neuron to fire.

The limitation on setting precise synapse weights and
subsequently determining what they are will be revisited in Chapter
3 (“AI is Like Your Brain: DEBUNKED”).

Adding Timing (Refractory & Propagation Delays)

Thus far, the demonstrations have presumed that the Neuron Engine
cycle time is equal to the neuron’s refractory period. That is, that a
neuron can fire once for every Neuron Engine cycle. This
simplification works for a large number of circuits but in some areas
of the brain, more timing is important.

Consider again that you have an incoming signal, such as from a
retinal cell, which spikes at different rates proportional to the
brightness at a particular point. The maximum firing rate of the
neuron is 250 Hz so if we were to be able to register an image in a
50 ms timeframe (not an unreasonable assumption), there would be
a maximum of 12 spikes in that timeframe. One could imagine that
the one-pixel brightness signal varies with time and that the number
of spikes over the past 50 ms represents the brightness at any given
time. Also, it’s not unreasonable that a brightness signal is limited to
fewer than 12 different levels as we know that it’s difficult to detect
more than 12 levels of gray (see Will Computers Revolt? Chapter 9).
I’ve already alluded to a neural circuit that balances neuron leakage
rate with incoming spike rate to filter the incoming spike rate. But
with a 4 ms Neuron Engine cycle time, it isn’t possible to represent
a neuron spiking every 5 ms or 6 ms, for example.

Refractory periods

It turns out that the only thing which relates the Neuron Engine
cycle time to real-world neuron spike times is the refractory period.
We’ve assumed that a neuron can spike in every cycle, therefore, the
cycle time must be 4 ms. By setting a different refractory period, we
can define the cycle time to be as precise as we like. If we set the
refractory period to be 4 Neuron Engine cycles, then a neuron can

Modeling Neurons and Synapses 35

fire once every 4th cycle, so the engine cycle time must be 1 ms. If we
say that the refractory period is 40, then the neuron can only spike
every 40th cycle so the cycle time is 0.1 ms.

Neuron B spikes one Neuron Engine cycle after A. With a refractory period of 4
cycles, we can see that B fires during the refractory period of A…only 1 ms later.

Since the lion’s share of computing power in the Neuron Engine
is used only when neurons spike, changing the cycle time does not
dramatically increase the amount of CPU time required. Increasing
the refractory period can change the number of cycles between
spikes but does not significantly alter the number of spikes that must
be processed.

Note that the leakage rate of LIF neurons is in the amount of
leakage per engine cycle so as the refractory period is reduced, all
leakage rates must be correspondingly reduced as well.

Axon Delays

A target neuron spikes in the engine cycle immediately after its
threshold is reached and this is not unreasonable for a 1 ms cycle
time. For a 0.1 ms cycle time, however, things will be too fast to be
biologically plausible. The key thing to understand is that, from a
simulation perspective, the time that a spike is initiated at the cell
body is not nearly as important as the time that the spike arrives at
the target synapses.

Since neurons in the brain can connect to others a considerable
distance away, and the neural spike travels along the axon so slowly,
the pulse might arrive at the target synapses anywhere from 1 ms to
tens of milliseconds later. This is ignored in the models presented so
far but is significant for certain networks like determining the
direction of incoming sound, and may be important in other future

36 Brain Simulator II: The Guide for Creating AGI

development. To compensate, the LIF neuron model carries a
parameter of “Axon Delay” which determines the number of cycles
that it takes for a spike to reach the target synapses.

Whereas the refractory delay is the same for all neurons, the
Axon Delay must be set specifically for individual neurons as they
may have different physical axon lengths.

So if the refractory period is set to 40, implying that the engine
cycle is 0.1 ms, it would be reasonable to set the Axon Delay to 20
(for example) so that neural spikes would arrive at target neurons 2
ms after the threshold is reached.

With appropriate settings of the Refractory Period, Axon Delay,
and Leakage Rate, a reasonably accurate representation of precise
neural timing can be achieved.

Short-Cut Models

There are inconveniences in using neural spikes to represent
information and computers are adept at many things that are
difficult to implement in spikes. Three examples are given here:

Color Neurons

The eye receives light and emits spikes down the optic nerve
corresponding to (among other things) the color detected at any
point in the visual field. The eye has separate sensors to detect
different colors (red, green, blue, and gray intensity) and signals
from these neurons seem to remain separate through the optic
nerve. The computer stores the RGB (or aRGB) triples in single
memory words and decodes them as needed—a process that is not
biologically plausible. For convenience, there is a “Color” neuron
model. It does not spike but simply stores an integer value that could
represent a color. As an added convenience, the color of the neuron
display in the user interface is governed by the RGB value, so if you
have an array of Color neurons, you can see the color image in the
user interface. Also, the internal value is displayed or modified in
hexadecimal as the “Charge” of any Color neuron.

The content of a Color neuron is only useful to Modules because
it generates no spikes. To extract a color from the Color neuron, you
need a few lines of code which will mask off the portion of the color
signal which is of interest. These components of color can then be

Modeling Neurons and Synapses 37

handled by more biologically plausible neurons. The conversion
from a single Color neuron to the spiking rates of four IF neurons
(representing red, green blue, and gray intensity) is demonstrated
by the code in the ModuleColorComponent Module.

FloatValue Neurons

Like Color, there are times that a high-precision floating-point
number is useful. Biological neurons have a limited range of
possible, discernible values, because high noise levels (and leakage)
limit the number of discrete values a neuron might represent. Also,
representing a signal in a neuron’s spiking rate is limited by the
speed at which a signal must be represented. Like the Color neuron,
neurons with the FloatValue model do not spike and must be
accessed via a software module.

Neuron Labels

Every neuron may carry a text label, and these are typically used
just to display in the user interface in order to keep track of which
function is being handled where. In the demonstration networks,
some neuron labels are used to indicate the function of a neuron or
to refer to it while others are used simply as notation labels within
the network.

There is no limitation, however, in the way a Module can
manipulate the label so it could also be used to store a text string
which can be used by other software in a Module. As an example,
neurons in speech-recognition are given labels that correspond to
the words or phonemes they represent. Also, a Module may
reference any neuron in the network by its label as well as by its Id
to, say, add a synapse or read or set a value.

Since neurons are sometimes referenced by Id and may also be
referenced by label, numeric labels (which might be ambiguous) are
automatically prepended with an underscore (“_”) which does not
show in the neuron display. Labels don’t need to be unique but this
can cause issues when subsequently referencing neurons by label so
there is a warning when setting a neuron label if it is already in use.

Differences between Brain Simulator and biological neurons

For the most part, anything which can be done in Brain Simulator
neurons is plausible in biological neurons. As mentioned previously,
biological neurons represent a complex soup of chemicals and it is

38 Brain Simulator II: The Guide for Creating AGI

difficult to distinguish between the components of neural activity
that are essential to intelligence and those which are artifacts of
their biological nature.

This section describes some of the many differences between the
Brain Simulator and its biological counterpart.

Use of Floating-point Numbers

Within the Brain Simulator, neuron internal values and synapse
weights are processed as floating-point numbers. Because of
decades of CPU performance optimization, today’s CPUs handle
floating-point numbers nearly as fast as integers, and if one wished
to be more biologically accurate and were to implement a system
limiting things to 256 discrete values (for example), the memory
requirement would go down by a factor of 4 but processing time
might not improve.

The use of floating-point numbers allows for minute differences
in various values to impact the result. For example, small differences
in synapse weights can be used to encode information while this is
not possible in biological neurons.

Noise

Brain Simulator neurons can be noise-free and synchronized.
Unless noise is deliberately introduced with Random neurons, the
operation of a network will be absolutely consistent and repeatable.

Reliability

For all practical purposes, neurons in the Brain Simulator are
completely reliable whereas neurons in the brain are not. Most of
the networks in the Brain Simulator depend on this reliability and
the failure of any single neuron or synapse might cause the network
to fail. To make a Brain Simulator Network more resilient to neuron
failure would require significant design additional effort and many
additional neurons and synapses.

High synapse weights and multi-synapse Equivalence

Most networks rely on synapse weights which are significant
relative to the threshold, so a small number of incoming spikes can
cause the target neuron to spike. While we can assume that
individual biological synapses have a much smaller maximum
weight, a single high-weight synapse is functionally equivalent to a
number of smaller-weight synapses in parallel.

Modeling Neurons and Synapses 39

The Brain Simulator only allows a single synapse between any
two neurons and we simply presume that this represents the
aggregate weight of a larger number of parallel synapses. As a
consequence, the number of synapses required to implement any
specific function is much smaller than the number of synapses
observed in biological neurons.

Creating New Synapses

In the brain, synapse weights can be changed in milliseconds. On
the other hand, creating new synapses is very slow—observed over
periods of hours or days. In the Brain Simulator, creating a new
synapse is only slightly slower than changing the weight of an
existing synapse. Although new synapses can only be added rapidly
by Modules, this eliminates the need for huge numbers of synapses
with near-zero weights which are in place in the brain as
placeholders waiting for their weights to be increased so they can be
significant.

Once again, the number of synapses required for a learning
function in the Brain Simulator is much smaller than the number of
synapses observed in biological neurons.

Sign Transitions of Synapses

In the Brain Simulator, since synapse weights are represented by
floating-point numbers, the only difference between an excitatory
synapse and an inhibitory synapse is the sign of the weight. In
biology, different synapse types must use different
neurotransmitters with different ionic charges. As such, the
biological equivalent of the Brain Simulator’s smooth glide from
excitation to inhibition must involve setting the biological excitatory
synapse weight to 0, then increasing the inhibitory synapse weight.
This means that in a general learning environment, there must be
two biological synapses to be equivalent to one Brain Simulator
synapse.

Once again, the number of synapses required for a learning
function in the Brain Simulator is smaller than the number of
synapses observed in biological neurons by a factor of two.

Synchronization

In the brain, all neurons can work asynchronously but in a
computer, things are necessarily more sequential so
synchronization is necessary. Imagine that two neurons fire at the

40 Brain Simulator II: The Guide for Creating AGI

same time and both connect to the same target neuron, one with a
weight of +1 and the other with a weight of -1. In your brain, the
target will never fire. In a simulator, if the +1 synapse is processed
first, the target neuron will fire but if the -1 is processed first, it will
not.

To eliminate this problem, the Neuron Engine algorithm imposes
a discrete time step and two-phase processing. Within a time step,
every neuron has the chance to fire just once, then every firing
neuron processes its target synapses. By setting a long refractory
period (a short cycle time), the impact of synchronization can be
minimized but most of the Brain Simulator networks are built with
a Refractory Period of 0. This is sufficient to represent a huge
number of network capabilities but it does impose some timing
limitations.

Performance

A considerable amount of code is required to make the neuron
array work properly in a parallel environment on a multi-core
system or across multiple computers in a networked system.
Additional code was needed to make the system FAST. The actual
speed measurements are included in Chapter 11 on performance.

As a point of comparison, the 450-neuron BasicNeurons network,
which is set with a refractory period of 0, can process engine cycles
in 0.04 ms—100 times faster than biological time. In general, the
processing requirement goes up with the number of neurons that
are firing. As neocortex neurons fire, on average, once every six
seconds, simulation of the entire neocortex on an array of today’s
high-performance servers should be possible.

The Array Structure

Within the Brain Simulator, each neuron has an ID which is its
index in the neuron array so it is a simple matter to indicate any
specific neuron. In the brain, no such addressing scheme exists. In
the simulator, you can add a synapse between neuron ID=1234 and
neuron ID=5678. But in the brain, you can only add a synapse based
on some function of physical proximity or some function of current
firing state.

This means that your brain might create hundreds or thousands
of synapses and then winnow these down to those which turn out to
be significant.

Modeling Neurons and Synapses 41

Video Links

“How Your Brain Works: Part 2 Neurons”
http://futureai.guru/videos?id=107

“Introducing the Brain Simulator II”
http://futureai.guru/videos?id=112

http://futureai.guru/videos?id=107
http://futureai.guru/videos?id=112

43

Chapter 3:
AI is NOT Like Your Brain

Sometimes at the beginning of a movie, you see something like:
“Inspired by true events” or “Based on a true story”. Saying that
“Artificial intelligence is like your brain” is a lot like that. It starts
with a few facts, then the rest of the movie goes off in a different
direction.

Your brain is so different from AI’s Artificial Neural Networks

(ANNs) that in this chapter I’ll focus on just three areas:
• ANN neurons aren’t like biological neurons.
• Artificial synapses are only a little like biological synapses
• Backpropagation, the mainstay of AI learning, has no

biological analog whatsoever.

Of course, there is another branch of AI, Symbolic AI, but it makes
no pretense of being like your brain so we’ll bypass it for this
conversation.

The reason this is an important topic is that in the search for
Artificial General Intelligence, today’s crop of AI applications show
very little aptitude in areas where any three-year-old can excel,
things like: common-sense understanding, cause and effect, the
passage of time, or gravity or spatial relationships.

We have an excellent example of general intelligence in the
human brain. So, Like the Wright Brothers who analyzed birds when
designing the first airplane, let’s compare the human brain’s
similarities and differences with today’s ANNs.

Neural networks are so different from the way your brain works,
let’s start with the lone similarity…the general concept. Both have
things called “neurons” interconnected by weighted “synapses” and
the state of a neuron impacts the states of neurons to which it is
connected.

44 Brain Simulator II: The Guide for Creating AGI

But there, the similarity stops. Biological neurons don’t appear in
orderly layers with orderly connections between one layer and the
next like in Neural Network diagrams. Instead, your brain has a
tangle of interconnections that we have yet to unravel.

Your brain is a tangle of connections like the artistic rendering on the left while
Artificial Neural Networks portray an orderly, layered connection structure.

Neurons

Computer models of biological neurons can be complex but
fortunately, the simplest neuron model, Integrate and Fire, is
sufficient to show the limited relationship with the ANN.

As described in the previous chapter, the biological neuron
accumulates charge from incoming synapses and emits a spike when
a threshold is reached.

Let’s turn to Artificial Neural Networks. If you’re at all familiar
with them, you’ve seen the weighted-sum formula numerous times.
It’s a useful formula but it doesn’t match the IF neuron model—and
more sophisticated models diverge even further.

AI is NOT Like Your Brain 45

The classic Artificial Neural Network neuron algorithm takes all inputs,
multiplies by weights, sums them, and then uses an activation function to create
the output value.

Here’s the initial problem. The biological neuron is a spiking
device that cannot and does not output an analog value like the x’s
and the output value in the illustration. Instead, neuron values are
binary—either there is a spike or there is not. In a few cases, AI
experts counter by saying: “No problem, just set the activation to a
step function so the output will be 1 or 0.” But this ignores the
accumulated charge from one cycle to the next, so we’d also need to
add internal memory—not reflected in the neural network model.
With enough correction, the formula can morph into the biologically
plausible one used in the Brain Simulator—but by then, any
relationship with Artificial Neural Networks is lost.

This is a timing diagram of IF-modeled neurons, the upper having a synapse
connected to the lower. Each spike of the upper neuron contributes to the
charge of the lower neuron until the threshold is reached. Then the lower neuron
emits a spike of its own and the process can repeat.

46 Brain Simulator II: The Guide for Creating AGI

OK, so many AI experts try to rectify things by saying that the x’s
don’t represent individual spikes but represent the spiking rate of
the neuron—the idea is that the rate could vary continuously. In
practice, though, the spiking rate cannot vary continuously because
the neurons have a maximum spiking rate of about 250 Hz and
neural signals cannot be useful below about 20 Hz. In between, high
noise levels in the brain limit the number of different rates that can
be reliably represented. But I won’t dwell on these practical
problems and instead move on to an even more fundamental issue.

In the real world, biological neuron firing rates can’t represent very many
different values because they have minimum and maximum useful rates and the
noise levels in the brain are high, limiting the number of different rates that can
represent a value reliably.

When you consider how changing an incoming synapse weight
affects the spiking rate, you see that the biological spiking neuron
simply doesn’t match the ANN formula. This is because these pesky
biological neurons are SIMPLY NOT LINEAR DEVICES.

AI is NOT Like Your Brain 47

With an input spiking at a constant rate (1.0) while we vary the incoming
synapse weight, you can see that the neuron’s spiking rate doesn’t match the
ANN formula. With a weight of 0.9, the formula defines a rate of 0.9 while we
observe a rate of 0.5.

For a somewhat more complex example, consider that biological
neurons can be affected by the timing of the incoming signals
received. This example is easily replicated within the Brain
Simulator and shows that two signals, both at a rate of 0.5, can result
in different spiking rates dependent on the phase of the two signals.

This Network illustrates another shortcoming of the ANN formula. Both the
input signals, A and B, are firing at the same rate of 0.5. But the output rate can
be 0.25 or 0.33 depending on whether A and B are firing at the same time or
alternately.

When we look at the formula, signal phase and timing are
missing. Yet in the real world of neurons, phase and timing are

48 Brain Simulator II: The Guide for Creating AGI

important and can lead to different results. This gives the biological
neuron a whole universe of potential functionality excluded from
the ANN formula.

And I haven’t started into that sigmoid activation function to the
right of the summation in the classic ANN algorithm a few pages
back. It has no biological analog at all; it was added on there in the
1980s to make the backpropagation algorithm work to solve some
specific problems…I’ll return to backpropagation in a moment.

This is not to say that the ANN formula is a bad formula. It just
doesn’t have much to do with biological neurons. Why? The
underlying idea of having neurons with analog, continuous values is
invalid, and excluding phase and timing eliminates lots of the
neuron’s potential.

Synapses

Which brings us to synapses for a similar conversation. Once again,
the neural network represents the weight of a synapse as a floating-
point number, although the neuroscientists tell us that they have a
limited number of discrete values. In the previous chapter, I
explained how the more values a synapse might take on, the slower
the learning process must be.

But let’s look at an even more fundamental problem. THERE IS
NO WAY TO ACCESS THE WEIGHT OF A SYNAPSE PRECISELY.

Reconsider the example of a neuron firing at a fixed rate
connected to another with a synapse of unknown weight. You
observe that the output neuron is firing at half the rate of the input.
But that doesn’t mean the synapse has a weight of 0.5, it means the
synapse weight is somewhere in the range of 0.5 on up to 1.0. How
can you tell what the exact value is?

Within the Brain Simulator, you can just click on the synapse and
read out its weight or click on the Out neuron and see how much the
synapse contributes to the membrane potential. But in a biological
brain, we don’t know how to measure the weight of a synapse and
the only way to measure a neuron’s membrane potential is with
needle electrodes, which is not a very pleasant prospect.

You could imagine a scheme where you fired an input neuron
repeatedly until the output neuron fired and count the number of

AI is NOT Like Your Brain 49

spikes it took. No consider that if you want to detect a synapse with
a weight of 0.01, it will take 100 spikes to get the output to fire. At a
firing rate of 250 Hz, this will take nearly half a second; and that was
to determine the weight of a single synapse—obviously to slow. If
you want to represent a hundred synapse values which is not much
precision at all, it will take even more time. So detecting a synapse
weight with any degree of precision is impossible, how about setting
the weight?

We’ve all heard that “Neurons which fire together, wire together,”
which means that connected neurons with near-simultaneous
spiking increase a synapse weight while the converse is true.

With B connected with a synapse of weight -1.0 and A connected with a weight
of +1.0, you can see how stimulating or suppressing simultaneous spiking will
change the weight of the synapse. You also get the idea that setting a synapse
to any specific weight is not possible and you can never know, precisely, what
the synapse weight is.

With sufficient stimulation, you can be pretty sure that the
synapse weight will near 1, and with sufficient suppression, it will
approach zero (or -1 or whatever limit values are in the Hebbian
formula). In between, though, synapse weights are imprecise. There
is no way to set a synapse weight to any specific value like .5 and
greater precision is even further out of reach. Finally, there is no
practical way for a neuron to discover the precise weight of a
synapse.

50 Brain Simulator II: The Guide for Creating AGI

Worse yet, every time the neurons spike, the synapse weight
changes slightly. That means that even if you could set the synapse
weight precisely, it won’t stay at that weight for very long.

So, if you can’t store or read back synapse weights, what good are
they? Well, synapse weights are not useless, far from it. They’re just
useless for storing precise values you want to read back. A better
way to approach it is that a synapse represents a single bit of
information while the weight value represents the confidence that
that bit is true—that is, how easily it can be changed.

Once again, looking at the fundamental neural network formula,
notice how it relies on the idea of precise synapse weights.

Backpropagation

Which brings us to backpropagation. It represents a family of
algorithms that need to be tweaked, trained, and tweaked again.
Everyone can give examples of the shortcomings of backpropagation
like this one where facial recognition improves if parts of the face
are rearranged—but is lost if the image is inverted. Further, you
know your brain doesn’t need thousands of training samples. You
can learn a new symbol or a new face in just a few moments…and
you’re not confused at all if it’s upside-down.

AI is NOT Like Your Brain 51

In this example of sub-optimal deep learning, recognition accuracy actually
improves when various parts of the face are grotesquely rearranged but is lost
altogether if the correct image is upside down.

But that’s not my point. Backpropagation cannot possibly be
representative of how neurons learn…for two fundamental reasons.

First, a quick look at the formula shows that it relies on knowing
what current synapse weights are and being able to directly modify
the weight of any synapse in the network with great precision. This
is simply not possible in a biologically plausible world.

This excerpt from the backpropagation equations illustrates how
backpropagation is completely reliant on being able to accurately read and
modify any synapse weight in a system.

Second, the method by which the weight changes are calculated,
called “Gradient Descent,” will not work if the gradient field is not
continuously differentiable…that is if it isn’t smooth—which it won’t
be because of the discrete nature of the neurons and synapse
weights in your brain.

Summary

So biological neurons, synapses, and learning aren’t like the ANN
and I’ve just scratched the surface. That isn’t to say that today’s AI

52 Brain Simulator II: The Guide for Creating AGI

approaches are wrong or don’t work. On the contrary, many AI
systems work very well. It does mean that the algorithms of today’s
AI are different from the way your brain accomplishes similar tasks
because classic ANN algorithms are impossible to implement in
neurons. After forty years of experimentation in AI with no
emergence of general intelligence, it’s time for some new
approaches.

The examples in The Brain Simulator II illustrate some of the
capabilities and limitations of biological neurons and can be used to
highlight the distinction between ANNs and real-world intelligence.

Could the Brain Simulator support the classic ANN algorithms? Of
course. As mentioned in the previous chapters, neuron values and
synapse weights are stored internally in floating-point numbers and
a Module can be written to have direct access to read and modify any
synapse weight in the network. Thus, we could add a neuron model
to include the weighted-sum algorithm of ANNs and we could add a
Module that implements backpropagation.

Would this be a good idea? Keep in mind that the point of the
Brain Simulator is to try out new algorithms and experiment with
different approaches. The internal structures are designed around
the biological neuron which is fundamentally different from the ANN
neuron. The biological neuron has internal charge memory, leakage,
and timing capabilities while the biological axon can connect
synapses to neurons almost anywhere in the brain. For efficiency,
the Brain Simulator only needs to process neurons when they spike.
This is fundamentally different from the ANN, which processes vast
arrays of neurons and synapses whether they are active or not. So
on the whole, implementing classic ANNs on the Brain Simulator is
possible, but not computationally efficient and would likely show
that the ANNs work just like the ones on other platforms.

Video Links

“AI is Like Your Brain: DEBUNKED”
http://futureai.guru/videos?id=133

http://futureai.guru/videos?id=133
http://futureai.guru/videos?id=133

53

Chapter 4:
Applications of Neurons

This chapter asks you to consider a few things the brain can do
within the context of what we know individual neurons can do.
Looking at the greatest things the brain can do can cloud the picture.
If you understand the workings of the neuron (or a transistor), it’s
not at all obvious that you can harness many of them to play chess,
for example. So let’s start with some of the simple things the brain
can do.

Obviously, neurons can differentiate between different colors or
intensities of light. How? It’s not as simple as you might think—
actually building a network in the Brain Simulator to accomplish
even this simple task can be an eye-opening exercise.

We know you can remember things—lots of things for a short
time and different things for a longer time. This chapter describes
several ways this might happen in neurons.

You can determine the direction of sounds with considerable
accuracy. How can neurons do that? The speed of sound requires
measuring differences of microseconds in sound waves with
neurons which take several milliseconds to spike.

The answers to these and many similar questions provide insight
into how the brain works and how it could implement general
intelligence.

Digital Logic in Neurons

It’s worth considering a special case where neuron values and
synapse weights are restricted to represent digital circuits, to either
1 or 0. With a synapse weight of 1, any individual neuron will cause
its synapse target neurons to spike and, conversely, a neuron will
fire if any incoming spike is received. If you consider a neuron with
multiple incoming synapses, it acts as an OR gate…it will spike if any
incoming signal spikes. Likewise, a neuron that is connected to itself
will spike indefinitely if it ever receives an incoming spike. Here’s

54 Brain Simulator II: The Guide for Creating AGI

where the -1 synapse comes in. Connect an incoming synapse with a
weight of -1 and it will cause the neuron to stop spiking.

Because it is connected to itself with a synapse of weight 1, whenever Neuron O
receives a spike from A, it will subsequently spike continuously because it
stimulates itself to spike. Subsequently, if it receives a spike from B which is
connected with a synapse of weight -1, it will stop spiking.

With this simple network, we’ve created a single bit of memory.
The spiking state of neuron O can represent either a 1 (spiking) or a
0 (non-spiking). There are other mechanisms that offer some
advantages over this one which will be discussed later.

Appropriate selection of synapses can create networks that
implement any basic logic component.

This timing diagram shows you that basic logic functions can be created with
simple neurons. As an example, the A OR B neuron spikes when either A or B (or
both) is spiking. The A AND B neuron only spikes when both are spiking. This type
of logic requires an “always-spiking” neuron (the neuron below B in the array)
in order to perform “signal inversion.”

While this is potentially useful in its own right, a key feature is to
extend this observation to know that given enough neurons, you

Applications of Neurons 55

could create any digital circuit. This is because the simple set of logic
gates implemented here are “functionally complete” and can be
proven to be the building blocks of any logic circuit.

For example, consider that the 8086 processor (ca. 1978)
contained only 29,000 transistors (at most 10,000 logic gates) and
so could be emulated within the Brain Simulator with ample neurons
left over for other functions. Even this early microprocessor, though,
would be perhaps a million times slower if implemented in neurons
because computer designs have been optimized around the
operating characteristics of transistors while the brain has been
optimized around the strengths and limitations of neurons.

The point is to show that even this simple model with synapses
restricted to one of two values is sufficient to represent any digital
circuit. All the complexity of the biological neuron may add some
efficiency but as more complex models are described, recall there is
no theoretical need for them—you could do everything with the IF
model and fixed-weight synapses.

Saving Energy

As an alternative, with the slightly more complex LIF model,
identical logic functions can be implemented with a different
scheme. Instead of continuous firing representing a logic 1, let any
single spike represent a 1. This is a bit more difficult to grasp but is
much more biologically plausible.

Where the previous demonstration used “always-firing” to represent a logical
“1,” this uses just a single spike. The logic levels are only valid after the “Read”
neuron spikes. When compared with the previous Network, this represents the
same logic but the multiple spikes are not there. The great advantage is that this
Network requires almost no energy when logic is inactive.

We know that the brain is tremendously efficient. My brain uses
only 1/10th the energy of the CPU in my desktop computer. One of

56 Brain Simulator II: The Guide for Creating AGI

the ways it does this is by not having any neuron spike unnecessarily
because spiking requires energy. While this logic family is just a bit
trickier, it forms an equally functionally complete set.

It’s difficult to know if your brain uses logic like this. If you were
probing a brain looking for activity, the always-firing logic would be
immediately obvious while the single-spike logic would not be.
Single spikes could be performing a variety of logic functions in the
brain and we will not be able to determine what they are until we
develop the technology for tracing individual connections.

Frequency/Rate Detection

Sensory signals which arrive at the brain contain information in the
form of the spiking rate. Whether it is color, sound intensity, touch,
etc., the stronger the sense, the faster the relevant neuron will be
spiking. Similarly, the brain’s output to muscles, most of the actions
your brain can perform, cause muscles to contract more strongly
with faster spiking.

Rate-based signals at the inputs and outputs of the brain have led
many to presume that all the internal processing of the brain is
likewise rate-based. But when you consider the types of things your
brain needs to do, though, you can convince yourself that interior
signals of the brain represent meaning in individual neural spikes or
clusters of redundant spikes.

Consider how the brain might answer these questions: What
color is this point? Are these two adjacent points the same color (is
there a boundary)? The answer to both of these is that neurons need
to be able to compare the firing rates of different neurons.

Applications of Neurons 57

This timing diagram, which might represent spikes coming from the retina,
illustrates the difficulty of identifying different colors. Your brain gets signals like
these; can you tell which color it represents? This timing is created with a
Module that can read pixels from a video camera and generate the spiking rates
for Blu, Grn, Red, and overall intensity neurons. A small amount of randomness
is introduced to prevent the signals from synchronizing.

Different neurons representing blue, green, red, and overall
brightness all spike asynchronously at different rates. Any specific
color could be identified by detecting specific rates of three neurons
(Blu, Red, Grn) simultaneously while a boundary might be located
by detecting different firing rates from two adjacent intensity
neurons.

There are two ways to look at any rate-based signal. The first
would be to count the number of spikes in a given timeframe. The
other would be to measure the time between any adjacent pair of
spikes. The former is more immune to noise because it averages over
a longer timeframe but the latter can generate a result more quickly
(for faster signals).

A simple way to detect which of two signals is firing faster is to
connect them to each of two different neurons with synapses of
weight 0.5 and -.5. The neuron with the faster-spiking signal will
accumulate charge faster in one and cause it to spike while
suppressing the other.

58 Brain Simulator II: The Guide for Creating AGI

A is spiking at rate 10. On the left side of this timing window, B is spiking at a
rate of 11 so A is faster. Midway through the display, B’s rate is reduced to 9 so
A is faster.

On closer inspection, this circuit relies on the fact that a faster-
spiking neuron will, at some point, fire two spikes in a period where
the other fires none. There are two problems with this simplistic
approach. First, any noise in the two signals will keep it from
working properly. Second, and perhaps more important, it’s slow. If
we assume a cycle time of 1 ms, it takes 100 ms for this circuit to
determine which signal is faster because spikes come about 10 ms
apart and it may take 10 spikes to detect the difference in rate.
Imagine how slow your brain would be if it took a full tenth of a
second to determine even the simplest difference. So we need a
more sophisticated solution. It will take more neurons but will be
much faster.

The following network can discriminate between eight different
spike rates but could be extended to an arbitrary number (within
time and noise constraints). To detect a visible boundary, two of
these networks would be connected to two adjacent pixel intensity
signals and the outputs are ANDed so that if the same level is
detected on both, no boundary exists. The second logic example in
the previous section could be used because it has the side-effect of
handling incoming spikes which are not synchronized.

Applications of Neurons 59

A Network like this can detect eight
different rates of incoming signal.
Neurons in the center column have
different leak rates so they act as high-
pass filters with different cut-off
frequencies. Neurons in the right-
column have synapses that limit firing
to only one specific frequency at a time.
In this example, the refractory period is
4 and the signals detected range from
5-12 cycles between spikes. This circuit
registers the rate on every other spike.

Color detection requires three

such discriminators. Similarly,
recognized colors indicate
neurons which are the AND of
three specific red, green, and blue
levels. Only eight levels may be

needed for each color (yielding 512 recognizably different colors)
while more levels would be needed for boundary detection. This
would account for the optical effect that two objects may appear to
be the same color until they are next to each other so the boundary
can be detected. Similarly, because the specific location of a
boundary is important while a color is a property of an area, we can
expect many more intensity (gray-level) signals than color signals.

Four Memory Mechanisms

The question is: given what we know about how neurons work, how
can they be harnessed to store information?

In the same way, the computer storage is hierarchical with CPU,
RAM, and SSDs or disks all contributing with trade-offs of speed,
cost, energy consumption, and permanence, memory in the brain
has different needs for different parts of the thinking process. For
example, your brain needs to store an object’s position for a very
short time in order to know if it is moving. It doesn’t matter how
many neurons it takes (cost and energy), but you only need this

60 Brain Simulator II: The Guide for Creating AGI

memory for a fraction of a second. At the other end of the spectrum,
you have long-term memories (like childhood memories), and these
need to be essentially permanent but consume no energy to
maintain the memory.

I see four ways that neurons can store information and others
may come to light. I have already touched on one method of using
neurons to store bits of information by firing continuously, and here
I add three more. Because of the size and varied structure within the
brain, it is likely that all of these are used.

Memory in Spiking State

Previously, I described how a neuron connected to itself with a
synapse of weight 1.0 can act as a single bit of memory. It will begin
to fire if it is stimulated and will fire continuously until it is
suppressed. This has the advantage of being easy to explain, requires
one neuron per bit, and is very fast (for a neuron). But we need to
consider that spiking neurons consume energy. This means that
storing information in continuous spiking is unlikely to be a
widespread approach in the brain.

As initially described, this method oversimplifies the problem
with a neuron synaptically connected to itself. When such a neuron
emits a spike, it will likely be received within the neuron’s refractory
period and be ignored. This can be overcome by increasing the axon
delay or by having multiple neurons forming a ring of connections
(as shown).

With a refractory period of 4, a ring of four neurons, each firing the next, stores
a single bit in the firing state. The ring starts firing on Set and stops on Reset.

Applications of Neurons 61

Memory in Internal Charge State

Let’s consider storing information in the internal charge state of
a neuron. For example, a neuron represents a logical 1 if the internal
charge is 0.1 or greater and a logical 0 otherwise.

In this circuit, when “Read” spikes, the content of the memory will appear on
Out. After “Set” has spiked, Out will spike after Read. After “Reset” has spiked,
Out will NOT spike after Read. The two unlabeled neurons in the center
constitute the memory bit while the other neurons can be common to any
number of bits.

This idea requires at least two neurons per bit because the “Read”
operation is “destructive”. That is, in order to read the internal state
of a neuron, you must alter its internal state, possibly causing it to
spike, but then you need to restore the original state back into the
neuron. This memory has very fast store and retrieval times and
uses no energy when it is not being read or modified.

Using an IF model, the storage time is infinite but with a more
realistic LIF model, the internal charge will decay so the memory
must be refreshed by reading periodically. Interestingly, computer
DRAM has exactly the same issue (that the charge state decays with
leakage) and needs to be refreshed for the same reason. If the
memory is not refreshed, it will gradually lose its content. On the
other hand, this may be a useful mechanism for short-term memory
in the brain. That is, the memory is never reset but only stored and
read. Simply waiting some amount of time (perhaps a second) is
sufficient to clear the memory by leakage.

Memory in Shifters

Another candidate for short-term or intermediate-term memory
is the shifter or delay line.

62 Brain Simulator II: The Guide for Creating AGI

Two types of shifter are shown. The upper transfers a spike directly from one
neuron to the next and so is a fixed time delay. The lower advances the spike by
one neuron every time the Step neuron fires and so can provide a variable
amount of delay.

A delay line can be thought of as a bucket-brigade where the
incoming signal, “In”, is transferred down a chain of neurons. The
length of the delay-line limits the amount of memory. Synapses
could be added at any intermediate step so, for example, you might
think back in your short-term memory to recall the last word, or the
last phrase, or more.

The delay line requires one or two neurons per bit depending on
whether speed control is needed. As an example, short-term
memory for incoming audible signals might incorporate the simpler
mechanism while the process for creating speech might use the
more complex design so that you can speak at whatever speed you
like.

Memory in Synapses

The classic AI mechanism is storing information in the weights of
synapses—you could think of a synapse of weight 1 as representing
a 1 and a synapse of weight 0 representing a 0. This memory
mechanism offers the advantages of being able to store much more
data as there can be thousands of synapses for each neuron. Further,

Applications of Neurons 63

this is the only memory mechanism with any degree of permanence.
If you want data to be stored for days or years, this is the mechanism
for you because the previous mechanisms either use too much
energy or decay over time. The disadvantage is that this mechanism
is much slower to change, requiring many spikes to set the synapse
weight.

The idea of storing data in a synapse is not as simple as it sounds. The single
Hebbian synapse from A to B can be set to a weight of 1 or 0 by the Reset and
Set neurons which each fire bursts of spikes sufficient to fully change the weight.
Shorter bursts could set the synapse to an intermediate value but making use of
some intermediate value is more complex.

You might think the analog nature of a synapse might let you
store any value in the synapse weight as is the classic idea of ANNs.
But experimentation with Brain Simulator leads to the conclusion
that although you might set the weight of a synapse to one of several
possible values, there is no practical way to read back the weight
without using multiple additional neurons—nullifying the
advantage of storing information in synapse weights.

Axon Delays

Neurons can be used to handle timing far more accurately than you
might think. Even though a neuron can only fire once every 4 ms and
the neural spike is 1 ms long, the neuron (both biological and
simulated) can differentiate very small timing differences through a
neat trick.

For example, when you hear a sound, you can tell which direction
it came from with reasonable accuracy. One of the important
directional cues is that the onset of the sound arrives at your two

64 Brain Simulator II: The Guide for Creating AGI

ears at different times depending on the direction. A sound directly
in front of you will arrive at both ears simultaneously while a sound
from the side will arrive at the nearer ear first. Different angles will
yield different delays.

One way you can localize sound is by detecting the difference in the time of
arrival of sound at your two ears. The chirp from Bird C will be heard at the same
time in both ears. A chirp from Bird A will be received at your left ear 0.62 ms
before it arrives at your right ear. The sounds from birds B and D will arrive at
your ears only 0.40 ms apart.

With the speed of sound at 343 m/s and the distance between
your ears at 21.5 cm, the maximum time difference is only 0.6 ms. A
sound at a 45-degree angle will have a time difference of 0.4 ms. How
can the slow neurons in your brain detect the difference between 0.6
ms and 0.4 ms? The answer sheds light on why timing is important
in neural modeling. We can be sure that timing is important in this
specific instance, but we don’t know that it plays an important role
in general intelligence.

Applications of Neurons 65

The neural circuit demonstrates how your brain could localize sound by
detecting whether your left or right ear receives a sound signal first. In this
example, L fires only if the left ear receives the signal first and R fires only if the
right ear receives the signal first. To create accurate localization, sub-
millisecond timing is needed so we would need multiple L and R neurons for
different angles and the synapses leading to them from the ears need different
Axon Delays.

Consider that if a neuron receives a +1 and -1 simultaneously or
if the -1 arrives first, it will not spike (as in the previous models). If
the -1 comes later (even by a tiny amount once the spike is being
emitted), the -1 signal will arrive in the refractory period and will be
ignored. How can your brain control the arrival times so precisely?
With varying axon lengths. By having multiple neurons connected to
both ears with varying axon lengths, your brain can determine the
angle with great precision. In the same way that the previous rate-
detector had different neurons which responded to different spike
timings, an array of neurons could fire only for specific sound
directions. In order to simulate this in the brain simulator, you’d
need to set the refractory period to 40 or even more so you could
represent timing with sub-millisecond precision.

Video Links

“How Your Brain Works: Part 2 Neurons”
http://futureai.guru/videos?id=107

“Short: Neurons”
http://futureai.guru/videos?id=139

http://futureai.guru/videos?id=107
http://futureai.guru/videos?id=139

66 Brain Simulator II: The Guide for Creating AGI

“Short: Single-Spike Conversion”
http://futureai.guru/videos?id=138

“Short: Short-Term Memory with Neurons”
http://futureai.guru/videos?id=137

http://futureai.guru/videos?id=138
http://futureai.guru/videos?id=137

67

Chapter 5:
Networks

The combination of neurons and synapses forms a “network” that
might perform some interesting or useful function. Every neuron
and synapse within the network has some specific state depending
on its model (as described previously) which defines what will
happen next.

Networks can be saved to files and restored for future
computation. At present, the complete state of the network is stored
in an XML file (a standard document file format) which can be
examined with any basic text editor like Notepad. When the file is
reloaded, the processing can continue exactly where it left off when
the file was saved.

The network files can be thought of as being like document files
with Brain Simulator II being the application that edits them. The file
is created with a Save or SaveAs function and then can be opened,
edited (or run), and saved again. You can have any number of
network files and network files can have any number of neurons and
synapses.

Also, like documents (as described in Chapter 7 on the User
Interface), portions of the network can be copied, pasted, or stored
to new network files in their own right. That means that if a portion
of one network does something useful, it can be copied and included
in another network. Further, portions of a network can be repeated
within the network with multiple paste operations.

Network files also contain a “Notes” section, which allows for a
description of what the network does and how it might be used.
When a network is first opened, the Notes will be displayed in a
read-only dialog.

The concept that an overall AGI network will be created from
numerous instances drawn from a library of neural functionality is
a key theory in the architecture of the system. It is a reasonable idea
based on the knowledge that the brain contains many more neurons
and synapses than could be explicitly described (or even initialized)

68 Brain Simulator II: The Guide for Creating AGI

in our DNA. Instead, it is likely that our DNA defines basic network
structures and these structures grow and repeat within the brain as
it develops.

This is an intriguing field of future research as our DNA defines
chemistry and how it might define a brain is unknown. In AGI, many
people presume that the human brain emerges largely devoid of
content, but consider a horse that is born with the ability to walk,
see, avoid obstacles, and a host of other functions which are
immensely complex. How the neural connections needed for these
functions are defined by the horse’s DNA remains a mystery.

What’s in a Network File

There is no need to know the internal structure of a network XML
file, but knowing what information is included sheds some light on
the information necessary for Brain Simulator operation. If you are
familiar with the format of XML files, you’ll find fairly
straightforward content.

The network file includes the complete content and state of the
network. The intent is that if you are running a network, you can
stop the engine and save it to a file. At some future date, you can
reload the file and continue the execution of the network exactly
where it was left off.

So what’s in a network?
• State of all Neurons: Model, label, internal charge, and

other model-dependent parameters.
• State of all Synapses: weight, target neuron, Model.
• State of the User Interface: Notes, scale, position, engine

state.
• State of all Modules: label, Location, function, internal

state as defined by the module itself, any module dialog
display.

Networks 69

This trivial demo Network shows how the Network content is represented in an
XML file. The intent is to show the straightforward content of the file and give
an idea of how the representation of millions of neurons and synapses might
result in a very large file. It is not expected that these files would be edited
outside of the Brain Simulator.

70 Brain Simulator II: The Guide for Creating AGI

This listing of the simple demo Network XML file shows the content of a
Network. In the left column (the first part of the file) are the Network notes and
various display parameters. This is followed by the list of Modules. Each Module
may store different information and some Modules (like the UKS described in its
own chapter) may have thousands of lines of content.

Lastly (shown in the right column), the neuron array. To save space, the file
excludes unused neurons and any values which are at default levels. Each
neuron is identified by its ID, a label if it has one, and various other parameters.
This is followed by the list of synapses, each of which has a weight and a target
neuron. In the right column, note that the neuron with ID=2 has a label of “A”
and two synapses, the first, connecting to neuron 32 with a weight of 0.9 and
the second, to neuron 33 with a weight of 0.34. At the bottom of the column,
Neuron ID=22, labeled “C,” is an LIF model with a leak rate of 0.23. Neuron ID=32
is the only neuron in the Network not at its resting potential and this is indicated
by the presence of the LastCharge=0.25 line.

Networks 71

At the time of writing, the network file does not include
information about multiple-server configurations. A network
running across multiple servers is stored as a single large network.
There is currently no provision for loading a file into a multiple-
server setup.

The Clipboard

Chapter 7 describes how to use the clipboard to cut, copy, paste, etc.
selected areas of a network. The key feature is to know that the
clipboard content represents a Network in its own right. If you store
the content of the clipboard to a file, it is stored in a format identical
to a full network. Not only can you then load the file back into the
clipboard for inclusion into another network, but you can open the
stored clipboard content directly, edit it, and save it again first.

List of Current Networks (v1.0)

These are the networks that are distributed with the Brain Simulator
download.

BasicNeurons.xml—illustrates the simplest neuron models.
CameraTest—inputs the camera on your computer to neuron

values.
SpeechTest—uses speech recognition and synthesis.
SimVision—shows Sallie's simulated environment and vision.
Imagination—shows how Sallie's internal mental model can be

used for imagination.
BabyTalk—learns to speak by trial-and-error learning. Where

SpeechTest works with words, BabyTalk works with phonemes.
Maze—shows navigation of a maze the way a 3-year-old might.

As Sallie explores the maze, she remembers landmarks, the
decisions she made, and the results which were achieved. These are
the necessary components of reinforcement learning.

Sallie—is an end-to-end AGI model using hearing, vision, and
knowledge to learn the meanings of a few words.

3DSim—demonstrates the 3D simulator under development.
NeuralGraph—demonstrates how a mathematical graph can be

implemented in neurons controlled by a module.

72 Brain Simulator II: The Guide for Creating AGI

ObjectMotion—demonstrates how Sallie can move objects in her
environment.

73

Chapter 6:
Modules

So far, I have described the functional network of neurons and
synapses so now we need to address how a network can be created.
In Chapter 7, I’ll describe how this can be done by hand, but this
approach is only applicable to small functions. On larger functions,
the “by-hand” approach becomes immensely tedious.

Enter the “Module” —a powerful addition to the simulation
process.

Any rectangular cluster of neurons can be assigned to be a
Module and a Module is backed by computer code in a high-level
language. All Modules to date are written in C# but could be in any
language supported by .NET, including C++ and Python. Modules
have direct access to all the underlying resources of the simulator,
including things like adding, deleting, or modifying synapses, or
reading or changing the values of neurons. Because the code within
the module has full control of the network, there is no limit to the
functionality that is possible.

Let’s start with the basics. The Module has two primary methods:
“Initialize” and “Fire”. The Initialize method is executed only once
when the Module is first added to a network or if requested by the
user. The Fire function is executed once for each cycle of the Neuron
Engine. Within the Initialize method, a Module might allocate a slew
of synapses. These synapses can not only connect to neurons within
the module but can connect to or from any neuron in the network,
including neurons in other modules. Both neurons and Modules can
also be referenced by label. Modules can also access the
characteristics of other Modules. In this way, for example, a Module
performing some vision function can set its dimensions as
appropriate to the size of the input image and create synapses
connecting the input image to its neurons.

While all neural functions could theoretically be created in
synapses, there are many which are much more convenient to

74 Brain Simulator II: The Guide for Creating AGI

implement in code. Again, thinking of some vision function, instead
of creating a slew of neurons in the Initialize method (to perform the
function), the Fire method can sample the state of the neurons in the
input image and set values for its own neurons directly—eliminating
the need to perform the function with neurons and synapses
altogether.

This c# code demonstration Module program shows the overall structure and
simplicity of a Module. Within the “Fire” method, the program finds a neuron by
label and if its charge is greater than 0.5, it sets it to 1 (which fires it). Within the
“Initialize” method you can see how to locate a neuron by its position, add a
label, and add a synapse to another neuron.

Modules 75

Further, within its Fire method, a Module might send or receive
signals to other functionality within the computer. For example, a
robotic Module might sample some neuron values and then send the
appropriate signals to various robotic servos to perform some
action. The previously mentioned input image might accept input
from a video camera and set neuron values as appropriate.
Alternatively, the input image could be read from any image file. The
huge breadth of opportunity is detailed in some of the Modules
described in subsequent chapters.

The layout and content of Modules are included in the network
file when it is saved. This means that the Module might have some
internal state and this is automatically saved and restored with the
network. As an example, a Module such as a world simulator can
create a set of obstacles in code and these will be saved and restored
automatically. So, if an AGI moves an object in the simulator, it will
stay moved for subsequent runs.

The ability to put any code into a Module means that instead of
using neurons, any functionality can be created in software. Modules
may also reference each other’s methods directly but this idea is
being phased out in favor of always interfacing through neuron
values.

From a programming perspective, any variables within a Module
declared as “Public” will automatically be saved and restored in the
XML network file unless explicitly excluded with an “[XmlIgnore]”
directive.

A Module might also have a dialog box. Again, using the example
of the simulator, the dialog box can show the locations of the AGI in
the simulation along with the positions of all the other obstacles
within the simulated world. Other modules can have dialogs that
display text content…for example, the speech recognition or text-
analysis modules.

At this point, all Modules are single-threaded and run
sequentially in each engine cycle. They are processed in the order of
the ID of their upper-left neuron. This may be changed in the future
and should not be relied upon.

76 Brain Simulator II: The Guide for Creating AGI

Using Modules for Interfaces to the World

Obviously, individual neurons of the Brain Simulator can’t access a
camera or microphone for input or control a robot for output
because all they can do is accumulate synaptic inputs and emit
spikes. Instead, simple Modules can perform these functions.

A Module with just a few lines of code can access a video camera
and put the content into neurons which can be used for other
processing. Conveniently, another Module can read images from
files and put them into the same neurons for more repeatable
downstream processing.

Another Module handles incoming speech. While it would also be
easy to create Modules that read raw microphone input, perform
signal processing, and do speech recognition, this wheel has already
been invented. Instead, the SpeechIn Module uses the operating
system’s intrinsic speech recognition engine. This can be used at the
level of firing neurons which represent individual words or at a
lower level where neurons represent individual phonemes. For
output, Modules can convert neural pulses to servo controls for
robotics or speech output (again via the operating system).

Finally, a simulator Module can simulate the functions of all the
sensory and output functions. The advantage of a simulator is that
the inputs can be simple and repeatable. Real-world visual and audio
input is immensely difficult to process and within the simulator, you
can make things as simple as you like—then rerun the exact same
input to debug other areas of the network.

Using Modules for Computational Efficiency

One key argument that AGI is coming sooner than most people think
is that there are numerous functions that a computer can perform
much more efficiently than any array of neurons.

Let’s consider a few examples. Consider the very simple
networks described previously which perform logic functions. While
it’s possible to perform these functions in neurons, they will be
millions of times faster in a few lines of code within a Module.

Next, consider that you have a sequence of actions you’d like to
perform and that individual neurons can perform each individual
action. You’d like your network to learn a “macro” that would fire

Modules 77

the individual actions in order. One way to do this is touched upon
in the delay line described in the previous chapter. Each step in the
delay line can learn to fire the appropriate action neuron in
sequence. You can do this with a minimum of two neurons per
output step plus the neurons needed to learn the sequence. This
cumbersome process is likely what the 56 billion neurons of the
cerebellum are doing.

The reason this is cumbersome in neurons is two-fold. First,
neurons in the brain don’t have specific addresses and are not
accessible in a specific order. Second, all of the synaptic signals from
a neuron arrive at their targets at essentially the same time. The CPU
has a significant advantage because computer memory is inherently
sequential. The CPU can access the Next item in RAM because the
concept of Next is defined by the CPU’s addressing space. This is not
the case with neurons. Neurons appear to be accessible only by the
configuration of their synapses, that is, the content they represent.
Also, within the simulator each neuron maintains a list of its
synapses and the neurons they target. In a biologically plausible
world, all these are processed simultaneously. But in a computer, it’s
a simple matter to direct that synapses be processed sequentially.
This is illustrated in the Universal Knowledge Store Module
described later.

Using Modules for Functions That are Difficult in Neurons

We know that your binocular vision can use the differences in the
images presented by your two eyes to estimate the distances to
objects you see. This is the basis for the illusion created by 3D
movies. I don’t know how the brain accomplishes this task but it is
reasonable to assume that it is complicated. Because you know
where things are in your immediate surroundings, even with your
eyes closed, this estimated distance is important for processing that
occurs downstream from object recognition.

Rather than letting development be blocked by this problem, I
wrote a Module that uses trigonometry to estimate visual distances.
There is no reason to think this approach has any relation to the way
your brain works but it accomplishes a similar goal. With this
estimated distance information, we can continue to experiment with
and develop the mind’s internal model of its surroundings. In future

78 Brain Simulator II: The Guide for Creating AGI

development, this Module might be replaced with a more
biologically plausible approach. Alternatively, we might conclude
that the trigonometry approach is significantly more efficient than
the way your brain works and the Module might continue to be used
for computational efficiency.

List of Current Modules (v1.0)

Some Modules have a custom dialog which can be displayed to edit
the Module’s parameters while the Neuron Engine is running. This
is indicated by the text “Has Dialog” after the Module name in the
following list.

Module2DModel: (Has Dialog) Manages the content of the UKS to
create persistent memory of Sallie’s two-dimensional surroundings.
It automatically updates positions so they are correct relative to
Sallie’s current position and orientation. Each object position has an
associated confidence level (based on the accuracy of the distance
estimate) and this is represented in the dialog by the length of white
ends on segments. By temporarily adding segments or changing
Sallie’s perceived position, Sallie can “imagine” surroundings with
new objects or from a different point of view.

Module2DSim: (Has dialog) Maintains Sallie’s simulated
surroundings. Sallie’s position and orientation are maintained from
Move and Turn Modules and directly output to Sallie’s various
sensory Modules. Detects collisions between Sallie and objects and
moves objects based on assumptions of center of mass and friction.

Module2DSmell: Sallie’s limited sense of smell. This Module has
two rows of neurons representing input from two aroma sensors
which is the strength of a field from green objects. Within the
simulator, only green objects have an aroma. It receives input
directly from the Module2DSim Module.

Module2DTouch: When one of Sallie’s arms contacts a simulated
object, this Module fires neurons indicating the position and angle of
the touch and whether or not the touch was at the end of an object.
This can update information in the 2DModel since the distance value
of touch is much more accurate than visual depth perception.

Module2DVision: Updates information in the Module2DModel
based on the content of the current field of view. Uses binocular

Modules 79

information from Module2DSim to estimate distances using
trigonometry.

Module3DSim: (Has Dialog) Allows Sallie to move about in a three-
dimensional world. Only Sallie’s visual input is shown in the dialog
display.

ModuleArm: Allows for control of Sallie’s individual arm positions
in Module2DSim. Each instance of the Module controls one arm. This
forms the basis for Sallie’s ability to explore objects by touch along
with Module2DTouch.

ModuleAudible: Works with the UKS to manage Phonemes, Words,
and Phrases. This is analogous to the Module2DModel in that it
manages UKS content related to Sallie’s surroundings.

ModuleBase: (Has Dialog) This is the Base Class from which all
other modules are derived. Useful only from the programming
interface.

ModuleBehavior: This is somewhat analogous to the brain’s
cerebellum in that it can manage sequences of primitive physical
behaviors. For example, to turn or move a specific amount, multiple
smaller moves or turns may be required.

ModuleBoundary: Works with ModuleImageFile to find visual
boundaries.

ModuleCamera: Analogous to a retina. Takes input from an
attached video camera and sets neuron values to represent the
colors seen at specific locations.

ModuleColorComponent: Converts a neuron with the Color model
into neurons that have firing rates appropriate to the RGB and
brightness components of the color.

ModuleCommand: (Has Dialog) Can read, edit, and execute test
scripts. Each step can fire any labeled neurons in any Module by
name and can test for (and wait for) results.

ModuleEvent: Works with the UKS to manage memory of events,
actions, and outcomes so that Sallie can learn which behaviors are
best in various situations.

ModuleFireOldest: This will fire the neuron within the Module
which fired the longest ago. This could be useful in selecting things
to forget—if a neuron hasn’t fired in a long time, it possibly doesn’t
contain useful information.

80 Brain Simulator II: The Guide for Creating AGI

ModuleGoToDest: This Module demonstrates the use of
imagination in determining a route. The Module works with the 2D
model to imagine the world from a different (remembered) point of
view.

ModuleGraph: This predecessor to ModuleUKS implements
parent/child, next, and other relationships in neurons.

ModuleGrayScale: This Module works with ModuleImageFile
module to generate a grayscale image from the component color
values.

ModuleHearWords: This Module works with ModuleUKS to
manage word and phrase storage.

ModuleImageFile: (Has Dialog) This Module reads an image file in
BMP or PNG format and sets color neuron values as appropriate.
Optionally, it will cycle sequentially through all the image files in a
directory, loading them one at a time.

ModuleKBDebug: (Has Dialog) This Module records neuron firings
in and out of the ModuleUKSN to create a transaction display.

ModuleLife: This allocates synapses to make an array of neurons
act to simulate Conway’s Game of Life.

ModuleLineFinder: This Module works with the Boundary Module
to find linear sections of a boundary. Future development will create
ModuleArcFinder.

ModuleMotor: Analogous to the brain’s motor cortex. This Module
consolidates Move and Turn functions.

ModuleMove: This Module distributes motion required to
Module2DSim, Module2DModel, Module3DVision, and
Module2DVision.

ModuleMoveObject: This Module works with Module2DModel to
allow Sallie to create a sequence of actions to achieve a goal. She first
moves an object to learn how her pushing on it causes it to move or
rotate and then moves the object to a goal location.

ModuleNavigate: This Module works in the 2D environment using
ModuleUKS to allow Sallie to solve mazes using landmark memory.

ModuleNull: This Module does nothing. It contains a small amount
of demonstration code to show how neurons and synapses can be
manipulated.

Modules 81

ModuleSpeakPhonemes: (Has Dialog) This Module works with
ModuleUKS to learn words in terms of underlying Phonemes.

ModuleSpeakWords: Uses the Windows speech synthesizer to
create speech with ModuleUKS.

ModuleSpeechIn: Uses the Windows speech recognition system to
create neuron firings from speech.

ModuleSpeechOut: Uses the Windows speech synthesizer to
create speech from neuron firings.

ModuleStrokeFinder: (Has Dialog) Along with ModuleLineFinder
locates strokes within an image. A “stroke” is the center between
two parallel boundaries.

ModuleTurn: Distributes Sallie’s rotation to modules that need the
information: Module2DSim, Module3DSim, Module2DModel, and
Module2DVision.

ModuleUKS: (Has Dialog) The abstract Universal Knowledge
Store. (See Chapter 10).

ModuleUKSN: The Universal Knowledge Store with the addition of
a neuron interface.

83

Chapter 7:
The User Interface

One thing which sets the Brain Simulator II apart from other neural
simulators is its user interface, which includes a display of the
content of the simulator. Rather than a black box that simply
displays an answer, the neuron content and Module dialogs can
show exactly what is going on as the network evolves. The main
thrust of the Brain Simulator is to create AGI and, along the way,
various pieces need to fit together and coordinate to create a whole.
Being able to see the pieces is a key feature.

This chapter describes the user interface in detail, but the Brain
Simulator is a standard GUI program with a few menus, button
controls, and a display of the neuron array and its Modules. As such,
you may choose to just look at the pictures to get an idea of how the
system works and start using the program. If you run into questions,
this chapter makes a good reference.

Overall Layout

The majority of the screen is devoted to the display of the array of
neurons and synapses—the network display. Colors represent the
current membrane potential of the neurons or the weights of
synapses. Labels within the neuron array are for reference and are
typically not used for computation.

In general, the menus control the network files, Neuron Engine,
and the display. The command bar has two sections, one for the
network display and control and the other for Neuron Engine
control. Status messages are displayed at the bottom of the screen.

The interface has been tested with a billion neurons, so being able
to zoom to the desired location within the neuron array quickly is
important.

84 Brain Simulator II: The Guide for Creating AGI

The overall layout of the Brain Simulator user interface is focused on the display
of the neuron array. Menus let you load and save the neuron array to a file. In
the command bar, one cluster controls the display and another controls the
Neuron Engine.

Controlling Network Files

As mentioned previously, networks are stored in files in XML format.
You can think of the Brain Simulator as an editor for these files. With
this thinking, all the file control is similar to that found in a text
editor. When the program starts, it will default to displaying the
neuron array which was last used. If that file isn’t accessible, a
sample blank neuron array will be displayed.

The User Interface 85

The “File” menu controls saving and restoring neuron networks as is detailed in
this section. The “Library” section lists the networks included with the program.

New Files

To create a new file, use the “File | New” command to bring up the
file creation dialog. The dialog will display the free memory on your
computer and estimate the maximum size of network you can
create. Like a word processor, creating a new file does not save it.
You must subsequently perform a “File | Save” (or “Save As”) if you
wish to subsequently retrieve your network.

In the New Neuron Array dialog box, the Rows and Columns
numbers you enter define maximums for the network. You can
increase these later but you cannot subsequently reduce the size of
a network. On the other hand, you can create a new one of different

86 Brain Simulator II: The Guide for Creating AGI

size and use the clipboard functions to copy the network content
from the original to this new file.

The dialog for creating new files lets you set the size of the Network and
(optionally) create random synapses for every neuron and configure the
Network to use multiple Neuron Servers.

You can initialize the refractory period for the network (this can
be changed later on in the “Neuron Engine” menu). The refractory
period defines the time base for the network and can be left at 0 for
most networks. On this dialog, you may also set up the use of Neuron
Servers, which is covered later in this chapter.

When you press OK, the new network will be created and
displayed. With large networks (many millions of neurons), network
allocation may take a significant amount of time and a progress bar
will show the progress of allocating neurons and random synapses.

Loading Networks

The commands, “File | Open”, “File | Recent”, and “File | Library”
(which lists the network files included with the distribution) all load
the related network file. If the network has “Notes”, they will be
displayed (read-only) when the network opens unless you check the
“Don’t show this again” checkbox. If you subsequently select “Edit |

The User Interface 87

Notes”, the same notes will be displayed in an editable form and
these edited notes will be saved with the Network when it is next
saved.

The “File | Properties” command will display a dialog with
information about the current network. You can increase the
number of rows or columns. Neurons are only “in use” if they are
connected by at least one synapse or have a label.

The File | Properties dialog displays basic information about the Network.

When you close the program, you will be prompted to save the
network file (except in the case of library networks) on the
assumption that since this is a real-time processing program, the
content will necessarily have changed. Library network files are
installed in a read-only directory. If you would like to modify a
library network file, you’ll need to use the “Save as” command to
save it somewhere else.

88 Brain Simulator II: The Guide for Creating AGI

Controlling the Neuron Display

The “View” menu shows the commands for controlling the neuron display.

Neurons and Synapses

Neurons are displayed as disks or as rectangles or individual
pixels depending on the display scale. Neurons are usually shown as
disks in the figures in this text. As the display is zoomed out to show
more neurons, such as for image processing, faster pixel and
rectangle displays are used.

Showing the display of the Camera Module when it is zoomed back to show
many neurons. Each neuron may be a single pixel on the display. This also shows
how, at very small scales, only the neurons within a selection box are displayed
(described later).

The User Interface 89

Color codes for Neurons: Neurons are color-coded to indicate the
state of their internal charge (membrane potential). A bright blue
neuron has a charge of zero. A dull-blue neuron is not “in use” as it
has no label and no synapses connecting to or from it. A firing neuron
is white (an internal charge of 1.0 or more). In between, increasing
neural charge goes through a rainbow from light blue to green,
yellow, orange, and red. Neurons that have the Color model selected
will instead display the color of their internal value.

A single neuron may be surrounded by a light-blue circle. It is the
“current” neuron and will be the target of paste, move, or multiple-
synapse actions which are described later.

Neurons with the LIF model will show “L=” followed by the
leakage rate. Neurons with the Burst model will show “B=” followed
by the number of spikes in each burst. Neurons with the Random
model will show “R=” followed by the mean firing rate (in cycles).
Neurons with the Always model will show “A=” followed by the
firing rate (in cycles).

Enabling/disabling the Display of All Synapses: The checkbox labeled
“All Synapses” and the menu command “View | Show synapses”
control whether or not synapses are displayed for the entire
network. If the display of synapses is not needed it should be
disabled as a large number of synapses can slow display
performance. When the display of all synapses is disabled, only
synapses from individual neurons which have been selected to
“Show Synapses” will show. For slight differentiation, these
individually-selected synapses display in front of neurons while
others are behind neurons.

Only synapses with either a source or target neuron within the
current neuron display will be shown—a synapse connecting two
off-screen neurons will not show even if it crosses the display area.
For UI performance reasons, a maximum of 2,000 synapses will be
displayed; others will be ignored. In this case, there will be a warning
in the status bar indicating that there are too many synapses to
display.

Synapses are displayed as a color-coded line with an arrowhead
indicating the direction of the connection. A narrower arrowhead
indicates that the synapse is “Fixed” (see below).

90 Brain Simulator II: The Guide for Creating AGI

The wider arrow on the lower synapse indicates that its weight may be changed
by the Neuron Engine. The weight of the upper synapse is fixed. These synapses
are both white, indicating a weight of 1.0.

Color codes for positive synapse weights are the same as neuron
colors. Negative (inhibitory) weights progress from light gray to
black over the range of 0 to -1.

Mouse Cursor Shapes

As the mouse cursor moves through the neuron display it can
take one of several forms depending on its location and the function
which will be performed.

Either Shift key is pressed or the Pan Display Control
(button with the same icon) has been pressed. Drag to
reposition the display.

The mouse cursor is between neurons. Drag to select a
group of neurons. Ctrl+drag to append another rectangle
to the selection. You can create odd-shaped selections
with multiple selection rectangles. Right-click to display
the selection Context Menu.

The mouse cursor is over a neuron. Click to fire the
neuron and select it as the “current” neuron. Drag to
create a synapse. Right-click to show the neuron context
menu.

The mouse cursor is over a synapse. Right-click to
display the synapse context menu.

The User Interface 91

The mouse cursor is on a Module. Drag to move the
module. Right-click to display the Module context menu
(see below). Similar direction arrows which appear
when the mouse cursor is near the edge of a Module
allow you to resize the Module by dragging the edge.

Display Control

Neuron arrays can be huge and have been tested with up to a
billion neurons, so it is valuable to be able to display the area of
interest easily. You can zoom and pan through the display several
ways, with control buttons, scroll bars, and just the mouse. As the
display scale changes, the amount of detail in the display changes to
help keep the display-update speed as fast as possible. As you shrink
the display, most neurons are not displayed and red lines form a grid
with reference numbers which can be useful in locating specific
areas of the network if it is large. Areas of neurons can be displayed
selectively by adding a selection.

Any time the mouse cursor is in the neuron display, pressing
either keyboard Shift key changes the mouse cursor to a hand to
allow you to pan the display with the mouse.

The mouse wheel changes the display scale as do “Zoom In” and
“Zoom Out” buttons and related menu commands. The “Zoom to
Origin” button and related “View | Show All” and “View | Origin”
menu commands can get you quickly to a desired display. The “Zoom
to Origin” button toggles between “Show All” which shows the entire
network” and “Show Origin” which shows the upper left corner of
the network. On networks which will fit completely on the screen,
these two displays may appear the same.

Like the pan function, the scrollbars at the bottom and right side
of the neuron display allow you to reposition it horizontally or
vertically. The arrow buttons at the ends of the scrollbars will move
the display by one row or column of neurons at a time. The areas of
the scrollbars between the thumb-track slider and the arrow
buttons will move the display one screen-full at a time when clicked.

The neuron display updates itself independently of the Neuron
Engine. This means that every update of the neuron display might
represent multiple cycles of the engine. The display represents a

92 Brain Simulator II: The Guide for Creating AGI

snapshot of the neuron states at a specific point in time as the
Neuron Engine is paused momentarily for the display to be updated.
The elapsed time used to update the display is shown in milliseconds
in the Status Bar and can be useful in learning how various display
options change the display rate (all the parameters which control
what items are displayed at which zoom levels are easily changed by
programmers by editing the DisplayParams.cs source file).

This display with a million neurons is zoomed smaller until only the reference
grid and Modules are seen. Each reference grid square is 250x250 or 62,500
neurons. The area of displayed neurons is created by adding a selection to the
desired area. This can be useful if the neurons of a particular area represent an
image or the overall firing pattern is useful. In this instance, the selection area
overlaps ModuleImageFile which can read image data from a file. The
surrounding neurons in the selection are bright blue, indicating a membrane
potential of 0.0.

Controlling the Neuron Engine

In general, the Neuron Engine runs continuously and there is no
need to stop the engine to change the network (just as there is no
need to stop your brain when various connections change within it).
Internally, some functions (like save) will pause the engine while the

The User Interface 93

process completes so the neuron state of the entire array is
consistent.

The Neuron Engine speed is controlled internally by adding a
delay at the end of each processing cycle. When the speed is set to
zero (the slider is all the way to the left) the inter-cycle delay is 1
second. When the speed is set to 10 (the slider is all the way to the
right), the delay is 0 so the Neuron Engine is running as fast as it can.

The Neuron Engine status display shows the speed, a cycle
counter, the number of neurons which fired in the previous cycle,
and how many milliseconds elapsed during an engine cycle, which is
a moving average of the previous 100 cycles.

You can control the Neuron Engine either with the Controls or the
Neuron Engine menu. “Reset”-ting the engine calls the Initialize
method on all the Modules in the network. Run and Pause start and
stop the Neuron Engine. “Step” will execute a single cycle of the
engine and will also pause it if it is running. “Speed” duplicates the
function of the Speed Slider and introduces a delay between engine
cycles.

“Refractory” changes the refractory period (in engine cycles) for
all the neurons in the network. This should be changed cautiously as
virtually all networks rely on a consistent refractory period and
changing it will likely require corresponding changes to the network
to keep it working.

“Threads” shows or changes the number of computing threads
used by the Neuron Engine. This does not normally need to be
changed but can be useful for optimizing Neuron Engine speed.
Normally, the neurons in the array are distributed equally among
the threads. Assuming an even distribution of firing and synapses,
the computational load will be distributed evenly among the CPU
cores. This doesn’t usually need to be changed except for high-
performance testing. Since the UI thread is always running, it’s a
good idea to set the thread count to one less than some multiple of
the number of cores. If you have four cores and set the thread count
to five, the first four threads can run in parallel but the fifth (orphan)
thread will have to run when another has completed, potentially
doubling the overall time it takes to process a cycle.

94 Brain Simulator II: The Guide for Creating AGI

The Neuron Engine menu allows you to set the various engine parameters.

Editing Networks

Neurons

Clicking a neuron will cause it to fire. If it was firing continuously,
clicking the neuron will cause it to stop firing. Double-clicking a
neuron will disable or enable it.

Right-click a neuron to display its context menu. Each neuron has
a numeric ID, which is the location of the neuron within the neuron
array.

The User Interface 95

Right-click any neuron to display its context menu. Sub-menus show incoming
and outgoing synapses. In the synapse menu, the first number is the weight, the
second is the target neuron ID, and the third (if it exists) is the neuron label. In
this case, the neuron labels are numeric too.

The ID is followed by a checkbox which is only available if you
have selected one or more rectangular groups of neurons (covered
later). When this box is checked, any changes you make to this
neuron will be applied to all the neurons in the selection. Only edited
entries will be applied so, for example, you’d like to set the neuron
charge to 0.08 on all the neurons but the charge on this neurons is
already 0.08, you’ll need to change it to something else and back.
Changed fields which will be applied show a green background.

Each neuron may carry a label. If you add a label, it can be just a
few characters and will reside within the neuron disk or it can be
longer, extending beyond the disk of the neuron to act as a notation
in the network. Neuron labels are not typically used in computation
but can be used to reference the neuron. Duplicate labels are allowed
but a warning is displayed if you set a label which occurs elsewhere
in the network. The neuron label may be used when editing a
synapse or when pasting a selection as described later.

96 Brain Simulator II: The Guide for Creating AGI

If the neuron label is set, you’ll also have the option of entering a
tooltip. This text will show as your mouse cursor moves over the
neuron. It is handy to be able to keep the neuron label to just a few
characters and add a longer explanation to the tooltip if needed.

In the dropdown, you can select the model to be used for this
neuron. This is followed by the neuron’s charge or membrane
potential. You can edit it. There is a dropdown but you can key in any
value you like. New values you enter will be added to the dropdown
for future use.

For this and the following entries, numeric text entries must be
syntactically correct. Illegal entries will show a red background and
will be ignored. Numbers which are outside the usual range for the
value will have a yellow background but will be set as requested. If
you set a neuron charge to 1.23, for example, the system will set it,
but the neuron won’t necessarily make use of the value outside the
range of [0,1].

Below this, several model-specific parameters may be displayed
which are described at the end of this section. In this case, the Leak
Rate and Axon Delay are specific to the LIF model.

The checkbox, “Enabled,” can be used to temporarily disable a
neuron or group of neurons.

The checkbox, “Show Synapses,” will display the synapses
originating from this neuron. It does not override the “All Synapses”
option which displays synapses regardless of the settings of
individual neurons, or various limits in display size and synapse
count which may prevent synapses from showing.

The checkbox, “Record Firing History” will begin recording for
this neuron and will open the firing history window if it was not
already open.

The “Clear Synapses” entry will remove all the incoming and
outgoing synapses on this neuron.

Lists of synapses to and from this neuron are also available. Each
list shows the weight and the target neuron (or source neuron in the
case of an incoming synapse). The neuron’s label will be displayed if
it has one. If you click in the area of the weight, it will open the
synapse context menu so you can change the weight. If you click on
the target neuron ID, the context menu for the target (or source)

The User Interface 97

neuron will be opened. If that neuron is not visible or the new
context menu wouldn’t fit at the neuron’s location, the neuron
display will pan so that the target neuron is near the upper left of the
screen.

The entry “Paste Here” will insert the content of the clipboard at
this current location. The entry “Move Here” will move the content
of the current selection to this current location. These are covered in
detail under “Clipboard” below.

The “Connect Multiple Synapses” command has a submenu with
three commands which act in concert with a selection. The
command “Selection to Here” and “Here to Selection” will add a
synapse with the current default characteristics between the
current neuron and every neuron in the selection. The two
commands differ in the direction of the synapses. The command
“Mutual Suppression” will add a synapse of fixed weight -1 between
every two synapses in the current selection.

For the following commands: If the
“Apply changes to selection” checkbox is checked, the change will
apply to all the neurons in the selection:

• Changing the neuron’s label.
• Setting the neuron’s charge.
• Changing the neuron’s model.
• Changing any of the parameters custom to the model.
• Selecting whether synapses are displayed.
• Adding or removing the neuron from the Firing History.

If you change the label, the new labels in the selection will be
incremented from the label you set.

Model-Specific Entries

For neurons other than the IF and FloatValue models, custom
parameters are available as follows:

Color model: the Charge is displayed as the hexadecimal value
which is the ARGB representation of the color.

LIF model: the Leak Rate and Axon Delay are available. The Leak
Rate is the fraction by which the charge will be reduced in each
engine cycle. The Axon Delay is the number of engine cycles after a
neuron fires when the synapses will deliver their weights to their
target neurons.

98 Brain Simulator II: The Guide for Creating AGI

Random model: the Mean is the number of engine cycles that the
neuron will fire if the Std Dev is zero—the average firing rate. The
Std Dev is the standard deviation of a Gaussian distribution of spike
times around the mean. Setting the Std Dev to -1 will disable the
random firing.

Burst model: The Count is the number of spikes that will be
created and the Rate is the number of cycles between spikes.

Always model: The Delay is the number of Neuron Engine cycles
between spikes.

Synapses

To add a synapse, position the mouse cursor over the source
neuron (note the up-arrow cursor) and drag to the target neuron.
The synapse will be added with default characteristics (initially
weight=1.0, Fixed). You can Undo an added synapse with “Edit |
Undo” or Ctrl+z.

Right-click a synapse (when the cursor is) to display the
synapse context menu and change its characteristics. You can
change its weight by selecting a new weight or entering a weight in
the text box. You can press DEL on the keyboard or select “Delete”
from the menu to delete the synapse.

The source and target neurons will be shown. If they have labels,
these will appear, otherwise the neuron IDs will be shown. You can
move a synapse by entering a new source or target neuron IDs or
labels. In the event that there is more than one neuron in the
network with the same label, the one with the lowest ID will be used.

When you display the context menu for any synapse, the
characteristics of that synapse are set as the default characteristics
that will subsequently be used when new synapses are added. This
means that a quick way to add a synapse of a given weight is to right-
click on a similar synapse to set the defaults, press ESC to close the
menu, then add your new synapse.

The User Interface 99

Right-click on a synapse to display the synapse context menu.

The “Model” dropdown selects the synapse model used by the
Neuron Engine to alter the weight during execution. The Neuron
Engine uses a lookup table to determine how much to change the
weight.

You can set the weight directly by entering it numerically in the
text box or by selecting one of the common weights on the
dropdown. You can delete the synapses with the “Delete” command
or by pressing the DEL key on the keyboard.

Clipboard

The clipboard is a powerful function based on the expectation that
the brain or an AGI will consist of repeating patterns of neurons. The
clipboard can be used to easily replicate areas of functioning
neurons from one network to another.

100 Brain Simulator II: The Guide for Creating AGI

The “Edit” menu contains commands for accessing the clipboard. For larger
networks, the “Find Neuron” and “Find Module” commands can be useful.

The User Interface 101

Using the clipboard makes it easy to create multiple copies of useful functioning
clusters of neurons. The synapse pattern is copied along with the internal state
of neurons so the pasted cluster can continue the computation of the cluster it
was copied from.

When the mouse cursor is between neuron disks and is displayed
as a cross, areas of neurons can be selected by dragging the mouse
across the area. The selected rectangle is shown in pink. To make a
complex selection shape, you can hold the Ctrl key and select
multiple rectangular areas. These rectangles may overlap or be
discontinuous but form a single selection.

Once a selection is made, several commands are available. As
mentioned in the previous section, certain commands on individual
neurons and synapses will be applied to all neurons and synapses in
the selection. For example, you can change the model of all the
neurons in a selection by changing the model of any neuron in the
selection.

Several commands which act on the clipboard are available on
the “Edit” menu, on the neuron’s context menu, and via keyboard
shortcuts.

Copy: A selected area can be copied to the clipboard. The
clipboard can be considered to be a network in its own right. Once
copied to the clipboard, this smaller network can be pasted
elsewhere into the same network, or a different network can be
opened and the clipboard content can be pasted into a second

102 Brain Simulator II: The Guide for Creating AGI

network. The copy command can be performed with the “Edit |
Copy” menu entry or with Ctrl-c. Synapses that cross in or out of the
selection (“boundary neurons”) are included in the clipboard if the
neurons they connect outside the selection have labels.

Delete: Clears all the neurons in the selection and removes any
synapses which are sourced by or targeted to neurons in the
selection. The Delete command can be performed with the “Edit |
Delete” command or with the “Del” key.

Cut: this combines the Copy and Delete commands. The Cut
command can be performed with the “Edit | Cut” menu entry or the
Ctrl-x key.

Paste: This copies the content of the clipboard into the network
at the location you specify. You will be warned if the paste will
overwrite neurons in the target and the paste must fit within the
bounds of the neuron array. The Paste (and Move below) command
needs a destination location within the neuron array. This is
provided automatically if the paste command is selected from the
neuron context menu but to use the “Edit | Paste” or Ctrl-v command
you must first set the target location by clicking a neuron which will
be displayed with a light-blue ring. Synapses which cross the
clipboard boundary will be replicated/stretched if the neuron
outside the boundary has a label.

Move: The move command is slightly different in that it does not
require copying to the clipboard. You can simply select a group of
neurons and use the command “Edit | Move” or the “Move Here” on
the neuron context menu. Unlike copy/paste, all synapses that cross
in or out of the selection are stretched whether or not the neurons
have labels. You can also drag a selection but if neurons in the
selection collide with other neurons in use, you’ll be warned. If you
proceed, these in-use neurons will become part of the selection and
will be dragged along with it.

The content of the clipboard can be considered a network in its
own right. The command “Edit | Save Clipboard” will prompt you for
a file name and will save the content of the clipboard to a network
XML file. That XML file can subsequently be opened and used as a
network on its own. The command “Edit | Load Clipboard” will read
a file into the clipboard for pasting into another network. Boundary
neurons are not saved to a file.

The User Interface 103

The clipboard is local to the Brain Simulator and is not usable for
passing data to other applications.

Other Selection Functions

If your cursor is a motion arrow () within a selection, you can
right-click for the selection context menu. You can copy, cut, and
delete the content of the selection. You can clear the selection.

“Mutual Suppression” will add synapses between all pairs of
neuron in the selection with a weight of -1.0.

“Random Synapses” will add synapses with random targets and
random weights to all the neurons in the selection. The number of
synapses added to each neuron is controlled by the “Count” textbox
which should be set first.

The Command “Reset Hebbian Weights” will set the weights to
zero of all non-fixed-weight synapses which are sourced in the
selection area. This can be useful for testing networks which store
information in Hebbian weights.

The context menu for a selection has a dropdown that allows converting a
rectangular selection area into a Module.

Lastly, a single selection rectangle can be converted to a Module
by selecting the Module type from the dropdown list. The function

104 Brain Simulator II: The Guide for Creating AGI

of the module is defined by the software within the Module itself
(See Chapter 6 for a list of Modules).

Once a Module has been added to a network, the mouse cursor
changes ins the area within the Module (but outside neuron disks).
The cursor changes into appropriate drag handles which can be used
to move or change the size of the Module.

The context menu for a Module.

You can right-click a Module to bring up its context menu. From
the context menu, the Module can be deleted, initialized, or named.
If the Module has an internal description it can be displayed with
“Info…”.

The dimensions of the module can be modified. This is the best
way to create large Modules with specific dimensions which would
be difficult to set with the drag handles. Use caution because there is
no check to prevent Modules from overlapping each other which
could lead to unpredictable results.

If the Module has a dialog box, you can display it from the context
menu. Each dialog is custom to the Module.

Firing History

Firing history can be collected on any set of neurons. To add neurons
to the firing history, check the “Record Firing History” checkbox in a

The User Interface 105

neuron’s context menu. History will commence when one of the
recording neurons fires. Then firing history will be collected
continuously as long as the engine is running.

The Neuron Firing History window shows the value of the internal charge for the
selected neurons in the form of a timing diagram. Labels at the left of traces
show the neuron’s label, if it has one, or the neuron’s ID number.

To control the Firing History display window, you can use the
buttons in the upper right to either remove all the previous firing
history but continue recording or to clear all the firing and stop
recording.

If the mouse cursor is within the Firing History window (with a
normal arrow cursor), the mouse wheel can be used to expand the
display. Once expanded, the scrollbar at the bottom of the window
can be used to scroll through the content in the window, even when
expanded data is still being collected. When the scrollbar is at the
right-most edge of the window, live data is displayed as it is
collected.

The traces in the window are labeled with the neuron ID or the
neuron label if it has one. The order of the traces in the window can
be controlled by dragging the labels to new locations.

106 Brain Simulator II: The Guide for Creating AGI

The charge level of each neuron is recorded and displayed
accurately but the waveform of the spikes themselves are
synthesized.

Multiple Servers

The Neuron Server can be operated simultaneously on any number
of computers on a local network. The IP addresses of the machines
must all be in the same family (the first three fields of the IP4
addresses must be the same). One machine must operate the Brain
Simulator II program to control the other servers and the control
machine may also be a server. Servers may have different
performance and resource characteristics and this should be taken
into account when configuring the system.

Because of its use of the network, your computer’s firewall will
need to be edited to allow this network traffic. If you are using
Windows Firewall, there is an application being developed which
will automatically make these changes. If you are editing your own,
you need to know that there are two applications which need to be
allowed: BrainSimulator.exe and NeuronServer.exe. Both
applications need to be able to send via UDP, both broadcasts and
targeted messages. Neuron Server uses ports 49001, 49002, and
49003 while Brain Simulator uses ports 49002 and 49003.

There are two steps needed to use the Neuron Server. On each
server machine, start the server program (NeuronServer.exe). On
the Brain Simulator machine, use the “File | New” dialog to configure
which neurons in the network will reside on which servers. Check
the “Use Servers” checkbox and press “Refresh” to find all the
Neuron Servers on the network. The servers will be listed in the text
window and the neurons will be initially assigned to them by
distributing them evenly. You can edit the textbox to assign the
neurons differently if you choose.

As of the current release, server configuration information is not
saved with the network and you can only use the New Network
dialog box to set up server configurations. To load an existing
network to multiple servers: Create a new with the correct neuron
counts for the network to be loaded. Then load the network and it
will use the configuration you juse entered.

The User Interface 107

Performance capabilities and limitations: The Neuron Engine in the
Neuron Server is identical to the one used in the Brain Simulator’s
single-computer configuration. This means that the performance of
the Neuron Engine will be identical to the non-server version for
synapses that do not cross a machine boundary (and all neurons).
Synapses that do cross a machine boundary will be substantially
slower. Also, the overhead of multiple machine control adds a few
milliseconds to each cycle, and the performance of the user interface
is substantially reduced. See Chapter 12 on “Performance” for
details.

Keyboard Shortcut Summary

Ctrl-z: Undo
Ctrl-a: Select all
Ctrl-x: Cut, copy to clipboard and delete from neuron array
Ctrl-c: Copy to clipboard
Ctrl-v: Paste from clipboard
Ctrl-m: Move neurons in selection area to target neuron
DEL: Delete neurons/synapses in selection
ESC: Close Selection or close context menu without saving
F1: Help Getting Started

Help and Support

The Help menu shows many ways you can get support or contribute to the
project.

Getting Started: Opens a browser window and displays the
overview help file with suggestions for first-time users.

108 Brain Simulator II: The Guide for Creating AGI

Register: Opens a browser window to the software registration
page.

Contents (online): Opens a browser window with the online help
content which includes this chapter.

Report bugs, request features (online): Opens a browser to the
GitHub repository for the project. After you’ve created a GitHub user
name, you can enter bugs or suggest features directly to the “Issues”
database. You can download the source code too. If you want to
contribute the project, request access to the code base.

Join Discussion (online): Opens a browser window to the Facebook
BrainSim group page. Join the group for all the latest information.

About: Displays version and contributor information.

Video Links

“Brain Simulator II Overview”
http://futureai.guru/videos?id=141

http://futureai.guru/videos?id=141

109

Chapter 8:
The Programming Interface

This chapter gives an overview of the programming interface for the
Brain Simulator II. This is a more strategic overview and not a
description of features and interfaces as these are covered in the
code itself, which can be downloaded from GitHub at the URL:
https://github.com/FutureAIGuru/BrainSimII. Even if you’re not a
programmer, you might want to read this chapter to get an idea of
the capabilities and limitations of the Brain Simulator and AGI
development in general.

There are three ways to program the Brain Simulator II in
addition to creating networks through the user interface:

• by interacting directly with the Neuron Engine, bypassing
the user interface.

• by writing new custom Modules.
• by making any other customizations, such as adding new

neuron models.

To modify the source code, you’ll want to download the free
Visual Studio (Community Edition) from Microsoft. In setup, you’ll
need to enable the C# and C++ languages and any other language you
choose to use.

The Neuron Engine interface

The Neuron Engine is written in C++, has been carefully optimized,
and is extremely fast. There is a C++ demonstration program
(CppEngineTest) included in the source code which shows how the
functionality of the engine can be accessed.

There is a similar program in C# (CsEngineTest) that uses an
intermediate translation library, the NeuronEngineWrapper. With
this second method, the Neuron Engine is accessible from any
language supported by .NET. The Brain Simulator itself interfaces to
the Neuron Engine through a translation module

110 Brain Simulator II: The Guide for Creating AGI

(NeuronHandler.cs) which should also be useful for a programmer
using the Neuron Engine from a managed .NET language.

This second method uses the same underlying engine code so
there is no loss of performance on the neuron array itself. But
because of the language translation, the interface to the engine is
somewhat slower. This may be an issue if a network is to be defined
with many millions or billions of neurons or synapses.

This programming level does not support Modules. The major
steps in using either the C++ or C# (.NET) interface are:

1. Define the neuron array and give its dimension. At this
programming level, the neuron array is one-dimensional—
the two-dimensionality is all created by the Brain
Simulator’s user interface.

2. Set neuron parameters and add synapses.
3. Repeatedly call the “Fire” method. The engine will execute a

single engine cycle every time this is called. After each call to
“Fire” you can retrieve the count of neurons that fired.

4. Retrieve neuron information from the engine to get the
results of the computation.

Within the Neuron Engine, the principal objects are NeuronBase,
SynapseBase, and NeuronArrayBase. Every NeuronBase object
contains a Vector of SynapsBase objects and the NeuronArrayBase
contains a vector of NeuronBase objects. You can have multiple
NeuronArrayBase objects if desired. Only physical memory limits
the number of neurons and synapses you can use.

Adding a New Neuron or Synapse Model

Within the Neuron Engine, edit the NeuronBase.h file and add your
new model name to the enum near the beginning of the file. Then,
edit the NeuronBase.cpp file and edit the “Fire1” and “Fire2”
methods to create the functionality for your new model. Within the
code, you can see how the various existing models are handled. This
is all that’s needed to make the new neuron model work in the
Neuron Engine.

To make your new model also accessible from the Brain
Simulator user interface, you’ll need to edit Neuron.cs and add your
new model type to the modelType enum and a tooltip to the

The Programming Interface 111

modelToolTip array. Then you’ll need to edit NeuronView.cs, edit
the GetNeuronView method to change the way the neuron displays
(if you want), and likewise the SetCustomCMItems method if you
want the context menu to display custom parameters.

The process for synapses is similar except that the enum change
is in the file SynapseBase.h while the functionality of the synapse is
in NeuronBase.cpp. For the user interface, similar changes will be
needed for Synapse.cs and SynapseView.cs.

The Module Interface

As previously described, Brain Simulator Modules are an extremely
powerful programming tool.

To create your own Modules, there are template files (under the
“Tools” folder in the source code). These can be added to Visual
Studio to make creating Modules and their dialogs easy. Then within
Visual Studio, you can “Add new item” and just as you might select
C# Class, you can select “Module” to create a new Module or “Module
Dlg” to create a custom dialog box for a Module.

A Module can do anything the computer can do without
restriction. All Modules are inherited from the class ModuleBase.
Module Dialogs inherit from ModuleBaseDlg. These take care of all
the housekeeping.

The objects within the Neuron Engine are mirrored in the Brain
Simulator User Interface code on as as-needed basis by the objects
Neuron, Synapse, and NeuronArray. As such, within a module, you
have full access to controlling the engine. Be aware that when you
request neuron information from the NeuronArray, a request is
forwarded to the Neuron Engine and the returned data is properly
reformatted. If this results in performance issues, you may choose to
use the Neuron Engine interface directly as described above.

The Module contains two principal functions:
1. The Initialize method is called when the Module is added

to a Network, whenever the “Initialize” command is
selected from the context menu, or the Neuron Engine is
initialized. Note that the Initialize method is not called
when the network is loaded from a network XML file as

112 Brain Simulator II: The Guide for Creating AGI

this would change the state of the network which is
otherwise unaltered by Saving and Opening.

2. The Module’s “Fire” method is called once prior to each
cycle of the Neuron Engine.

If you need to reinitialize something whenever a file is loaded, the
method SetupAfterLoad is provided. An example of this is initializing
the underlying speech engine any time a file using the SpeechIn
Module is loaded. Similarly, if your module uses data structures that
don’t stream well into XML, the Method SetupBeforeSave can be
used. An example of this is the removal of potential circular links in
the Universal Knowledge Store Module. These are mirrored by
corresponding changes in SetupAfterLoad that restore the content
to its original state.

All public properties are automatically saved and restored to the
Network file. If, for some reason, you need a public property that you
don’t want to store, precede its declaration with [XmlIgnore].

Lastly, there is a vast array of services that are useful for
manipulating neurons and accessing other Modules. Principal
among these are GetNeuron and GetNeuronAt, which can return a
neuron object for any neuron in the network. Given the neuron, you
can query or set its properties, add or delete synapses, etc.

At the time of this writing, Modules are executed sequentially and
the order is defined by the placement of the Module’s upper left
corner in the neuron array, top-to-bottom, then left-to-right (in
numerical order of ID). In general, this makes little difference
because a module which doesn’t process on one cycle will be able to
on the next.

Modules may expose public methods which are accessible to
other modules. Generally, Modules should communicate by setting
neuron values rather than by method calls because it makes the
Modules more generally useful. However, there are instances where
the use of neurons would be tedious and direct method calls are
more convenient. An example of this is described in the Universal
Knowledge Store chapter.

The Programming Interface 113

Are you Cheating? The Limits of Plausibility

Philosophically, intelligence might take many forms and there may
be intelligences that work differently from human intelligence. At
this point, however, human intelligence is the only general
intelligence we know about, which is why the Brain Simulator uses
it as a model.

On the other hand, there are good reasons to ignore biological
plausibility on occasion, but when you do, it’s useful to know how far
you’ve strayed from the “true path” and why. As an example, we
know that your brain is capable of estimating distance given the
differences in images received by your two eyes. We could speculate
on how this might be accomplished in neurons or we can write a few
lines of trigonometry code to accomplish the same task. This is done
in the Module2DVision file even though it is implausible that any
portion of your brain works with the use of floating-point
trigonometric functions.

It’s fine to develop AGI in any form that works. At the same time,
it’s a good idea to notice how your AGI differs from human AGI so
you can highlight areas of additional AI risk which should be
addressed.

115

Chapter 9:
The BasicNeurons Network

This chapter is a sample of the “Notes” included with every library
network. Notes can contain any desired text but typically include:
• Purpose—what’s the point of this network.
• Things to Try—ideas about things you might learn from this

network.
• Current State of Development—known bugs and suggested

future capabilities.

When any Network is opened, a “Network Notes” section is displayed if it has
one. It includes sections on the Purpose of the Network, Things to Try, and the
Current State of Development of the Network. When you build your own
Networks, you can add and edit notes as well.

Purpose:

This network illustrates some capabilities of the basic Integrate and
Fire (IF) and Leaky Integrate and Fire (LIF) neuron models.

116 Brain Simulator II: The Guide for Creating AGI

The neurons in cluster #1 are connected, one-to-the-next, by
synapses of weight 1.0, so the firing of one causes firing of the next.

By connecting one neuron to the next with a synapse of weight 1.0, each firing
neuron will cause the next to fire in sequence and firing neurons will chase each
other around the loop. The center-right neuron has a synapse in front of it
because it has “Show Synapses” selected.

Cluster #2: the left-most is set to always fire. It is also connected
to the center neuron with a synapse of weight 0.25. You can see the
color change as the center neuron accumulates charge. When it
reaches its threshold, it will fire and cause the right-most neuron to
fire once every fourth cycle.

This tiny circuit shows how neurons spontaneously act as frequency dividers. Of
the three neurons, the left-most fires on every cycle while the center fires at a
rate dependent on the weight of the incoming synapse.

 Below that in cluster #3 is the simplest possible memory circuit.
Neuron FF is either firing all the time or it is not and so represents a
single bit of storage. The neuron is connected to itself with a synapse
of weight 1.0 so whenever it fire it will contribute enough charge to
itself so it will fire again. The R (Reset) neuron is connected to FF

The BasicNeurons Network 117

with a synapse weight of -1.0 so firing R will cause FF to stop firing.
S (Set) is connected with a synapse of weight 1.0 so firing it will
cause FF to start firing continuously. This works because the axon
delay is equal to the refractory period; both are 0 in this case. If the
refractory period were longer, the signal out from FF would arrive
during its refractory period and would be ignored so this circuit
would be a bit more complex.

The simplest bit of memory is also called a Set-Reset Flipflop. It has two states,
in this case, firing or not firing, and so can store a single bit of information.

 Cluster #4 shows basic digital logic functions of AND, OR, XOR,
and NAND implemented in neurons using a logic model of always-
firing is "1" and never firing is "0". This is an important
demonstration because it proves that neurons form a functionally
complete set and so could be used to implement ANY logic circuit. A
CPU could be constructed from neurons just as a brain could be
constructed from transistors.

 To the right in Cluster #5 is a similar set of logic circuits using a
logic family where "1" is represented by ANY SPIKE and "0" is
represented by no spike at all. This uses much less energy because
continuous firing is not needed but outputs are only valid after the
READ neuron spikes.

118 Brain Simulator II: The Guide for Creating AGI

These two circuits show how digital logic can be implemented in neurons. In the
left-most set, the basic logic elements are created with a logic 1 defined as firing
on every cycle. A more plausible system on the right only requires neuron firing
when the logic values change—it consumes much less energy for similar
performance.

 Cluster #6 should a simple circuit to count the number of firing
neurons in a group. The right-hand column indicates the number of
neurons (R0-R3) which are firing.

 Cluster #7 shows another mechanism which can be used for
short-term memory. In this case, the neuron’s internal charge can
also store a bit of memory. In the center column of neurons, if the
charge is greater than 0.1, this represents a 1. If the charge is lower,
it represents a 0. The output is only valid after the Read neuron fires.
This memory is fast but fades with the leakage of the neurons and so
must be refreshed. If the memory is not read, it will be lost. Other
memory mechanisms are described in the HebbianSynapses
network.

The BasicNeurons Network 119

The Neurons, Set0-3 are the data inputs to this four-bit memory. Each
contributes a 0.9 charge to the neurons in the center column which is not enough
to cause spiking. When the Read neuron spikes, it contributes 0.9 and any
neuron with a bit stored in it will fire the corresponding Out neuron.

 Clusters #8 and #9 are two circuits for detecting the firing rate
of the input. In each group, the left two neurons are connected by a
synapse which generates a defined spiking rate. Cluster #8 detects
the frequency while cluster #9 adds the ability so that a single spike
is output when a frequency is detected but there is no spike output
otherwise. The multiple single-spike outputs are OR'ed together in
the "Changed" output. It will spike whenever the input frequency
changes.

120 Brain Simulator II: The Guide for Creating AGI

These two circuits convert from a rate-based encoded signal to parallel signals.
The right-hand version includes memory so it can detect if the incoming firing
frequency has changed.

Things to Try:

In cluster #2, right click the synapses from In to C and change its
weight. Note how you can change the firing frequency of Out.

In cluster #3, click the "S" and "R" neurons to change the firing
state of the FF flip-flop. This is a fast memory mechanism with this
type of neuron model as it stores a bit in a single neuron. This is also
a good opportunity to demonstrate the history window by selecting
all three neurons, right-clicking, and selecting the “Record firing
history” checkbox.

In Cluster #4, click the "A" and "B" neurons to exercise various
digital logic functions [This will make sense to people with EE and
CS experience]. A neuron with a synapse to itself will fire
continuously after it is clicked and will stop firing if clicked again.
Note that a "1" neuron which always fires is necessary to create an
inverter (for NAND).

Repeat with cluster #5, the "1"=ANY SPIKE model. Once you click
"A" and/or "B", you need to click "READ" for the logic to perform.

In cluster #6, select different combinations of "R" neurons and
notice that the appropriate output neuron always indicates the
number of neurons which are firing. The right-most column
eliminates noise in the output with additional suppressing synapses
but is not strictly necessary.

The BasicNeurons Network 121

To use the "Short-Term Memory" circuit in cluster #7, click one
or more "SET" neurons to store information. Click "Read” and
observe that the memory content is set to the "Out" neurons. To
store a new value, click "Clear" to clear all memory cells. Because the
bits are stored in the internal charge of the LIF neurons, it decays
over time and needs to be refreshed periodically with a "READ"--just
like DRAM.

You can build your own network:

Right-click any neuron or synapse to see its state and edit it. You can
use the checkbox to add more neurons to the firing history window.
In that window, you can drag waveform labels up and down in the
history window to reorder the waveforms. You can change the
model used to calculate a neuron's function.

You can drag the mouse cursor from one neuron to another to
create a new synapse. Then right-click the synapse to set its weight.
New synapses will default to the characteristics of the most-
recently-selected synapse.

You can zoom and pan the neuron display by holding the Shift key
and using the mouse wheel or dragging the display. You can also use
the scrollbars or the buttons below the main menu bar. Notice that
this network is 30x15 or 450 neurons but the simulator works with
millions.

When the mouse cursor is between neurons it changes to a cross
and you can then drag to select a group of neurons. You can then
move to a clear neuron area, right-click a neuron and Move Here to
move the neurons. Other standard clipboard commands also work.
If you change the model of a neuron within a selected area, all
neurons in the selection can be changed. Holding the Ctl key while
selecting lets you create a selection with multiple rectangles.

Current State of Development:

This network represents the basic neuron models, engine operation,
and user interface and is reasonably robust. Please report any bugs
you encounter.

123

Chapter 10
The HebbianSynapses

Network

Purpose:

This Network demonstrates the use of three different synapse
models with spike-timing-dependent plasticity which is referred to
generically as Hebbian learning. This involves synapses whose
weight can be changed by the firing timing of the neurons they
connect. The change in synapse weights is generally accepted as the
principal mechanism which underlies learning.

There are a number of parameters which can contribute to
synapses plasticity:

• The current weight of the synapse.
• The relative spike-timing of the neurons it connects.
• The range of weights the synapse can take on, for

example [0,1] or [-1,1].
• The rate of variation of the synapse weight.
• Whether the variation is linear or follows some other

algorithm.

The algorithm for weight variation could be any combination of
these factors. In biological synapses the specific algorithm is not
known and the experimental variation is large. Accordingly, the
Brain Simulator II supports any number of experimental models for
synapse variation. The ones currently implemented are:

• Fixed—the weight cannot be modified by the Neuron
Engine.

• Binary—the weight is either 0 or 1 and changes in a single
engine cycle.

124 Brain Simulator II: The Guide for Creating AGI

• Hebbian1—the weight range is [0,1] and varies via a
lookup table so that intermediate weights are stable
when connecting two neurons. For example, a synapse
with weight 0.25 will cause the target neuron to fire every
fourth cycle so the amount of increase added to the
weight when the target fires is 4 times the amount of
decrease.

• Hebbian2—the weight range is [-1,1] and the weight
varies so that weights will effect pattern recognition.
When there are four incoming synapses, the maximum
weight is .25 so that all 4 must fire to cause the target to
fire. The weight follows a tanh function so that it is most
stable at its maximum and minimum values.

The Complexity of Synapse Plasticity:

One of the points of this network is to show the complexity of
building a system with variable synapses. In the BasicNeurons
network, all the synapse weights were fixed and the function of the
various clusters was completely predictable. In the cluster in this
network, if there were no fixed-weight synapses, the clusters would
quickly degrade and not function.

It’s easy to say that “Neurons which fire together, wire together.”
But when thinking about biologically plausible neuron and synapse
models, this is easier said than done. The binary synapse model is
the simplest possible implementation and in cluster #1, it takes
multiple control neurons and fixed synapses to control the weights
of a few synapses. With the more complex models, it is obvious that
it is impossible to precisely control synapse weights. Further, if you
could set them to precise weights, they would not maintain those
weights and there is no way (plausibly) to determine with the
weights are.

That said, variable synapses can be an extremely powerful tool
and clusters #3 and #4 show how they can be harnessed to
recognize patterns and store structured knowledge.

Things to try:

There are four demonstrations in this Network demonstrating the
three variable synapse models.

The Universal Knowledge Store 125

In cluster #1, single binary synapses connect inputs to outputs.
By clicking “Enable,” the synapse weight is set to 1 and the signal
passes through. By clicking “Disable,” the synapse weight is set to 0
and the signals are blocked. This shows some of the difficulties of
using variable synapses. To set the synapse weight to 1, both the
input and output neurons must fire. To set the weight to 0, just the
output must fire. In principle, the Enable neuron fires both neurons
simultaneously, the Disable neuron fires just the target while
inhibiting the source. D0 and D1 are needed for timing. The Out1 and
Out2 are used to suppress spurious output spikes which would
otherwise occur with Enable and Disable actions because both
require firing the target neuron in order to function.

This memory stores the value as the weight of a synapse which is either 1 or
zero. The variable synapses are noticeable in the bottom center because their
arrowheads are wider. When the weight is 1, the signals from In1 and In2 are
transmitted to the outputs, when the synapse weights are zero, the signals are
blocked. Four neurons are needed to control the timing to set the weights of the
two synapses.

Cluster #2 demonstrates a single Hebbian1-model neuron.
Because its weight varies between 0 and 1, it will act as a frequency
divider depending on its current weight. By pressing and holding
“Enhance”, the target neuron will be fired and the weight will slowly
increase. The Suppress neuron prevents the target neuron from
firing and thus the weight will decrease. If you show the recorded
firing history of the I, O, Enhance, and Suppress neurons, you can see
how the frequency of the output spiking can be controlled by the
Enhance and Suppress neurons.

126 Brain Simulator II: The Guide for Creating AGI

Again, the variable synapse is in the bottom center. In this case, the Enhance
and Suppress neurons force or block the firing of the O neuron and will increase
or decrease the weight of the synapse. In this model, the weight will remain near
whatever value it is set to.

Cluster #3 is a circuit which can recognize patterns of four input
neurons. All of the “meat” of this network is in the diagonal synapses
between the O, -O and P columns. The inputs (i0-i3) are latched by
M0-M3 using the short-term memory circuit from the BasicNeurons
network. This way, you can click them in any order and the input
timing is not critical.

When you press “Start,” the pattern is spiked on O0-O3 and its
inverse is spiked on -O0- -O4. By using inverses, this circuit provides
equal value to single-bit errors whether it is a 0 which should be a 1
or a 1 which should be a zero. The pattern is presented to the array
of Hebbian2 synapses and the output pattern which most closely
matched the stored pattern will fire first.

The patterns which are stored in the network as saved are:
P0:0000 P1:1111 P2:1100 P3:0011 P4:1010. When a match is found,
the “Match” neuron will fire and cause the cycle to stop. If no match
is found “No Match” will fire. The closer the input pattern is to
exactly matching the stored pattern, the faster it will be recognized.

To store new information, start by clearing all the stored
information by selecting all the O neurons, right-clicking, and
clicking “Reset Hebbian Weights.” You can store new patterns by
firing “Clear”, then inputting your pattern, and then firing one of S0-
S4 to store your pattern in the synapses targeting P0-P4
respectively. This will cause repeated firings of the P neuron just
after the O neurons and will cause the synapses to adjust their
weights to match the pattern. After a pattern is learned, you can
repeat the original process of clicking a pattern into the i0-i3
neurons, pressing Start, and seeing the pattern recognized (or not)
on a P0-4 neuron. If the data is not cleared before storing a new

The Universal Knowledge Store 127

pattern, it may take many store cycles in order to store a new
pattern. Each of the “L” neurons fires a burst which adjusts the
synapses.

This looks a lot more complex than it is. The four inputs, i0-3 represent a pattern
which is recognized by one of the neurons P0-4. The L and S columns fire bursts
which set the variable synapse weights in the center.

Cluster #4 shows how structured knowledge can be stored in
plastic synapses, This closely follows the explanation given in
Chapter 11 with the simplest example of a three node graph. The
example is to consider that if you know that “red is a color” and “blue
is a color” then you can use the structure to answer the “what are
colors” and the “red and blue” as an answer.

128 Brain Simulator II: The Guide for Creating AGI

This circuit shows a neural mechanism by which knowledge can be stored in
neurons. A more advanced version of this circuit is shown in the NeuralGraph
Network and is then expanded in the Universal Knowledge Store. Information is
stored in the diagonal Hebbian synapse weights in the bottom center.

In the cluster, there are three nodes and the relationships Parent,
Child, and This. Once data is loaded, if you fire Node1 followed by
Parent, the output will fire the parent nodes of Node1. Likewise for
Child. The process of getting information into the network requires
a few steps. As above, start by resetting the Hebbian synapse
weights. To say that Mode1 is a parent of Node2:

• First, fire Node1.
• Fire This to transfer it to the desired output.
• Fire Reset then Node2 to set the new input.
• Fire the Learn neuron to put the network in a learning

mode.
• Finally, repeatedly fire Parent to strengthen the

appropriate Hebbian synapse.

The Universal Knowledge Store 129

Current state of development:

This is early-stage development and many other capabilities are
being experimented with. Of particular interest is how the synapse
weights might adjust to compensate for errors and which pattern
neuron should be selected to store a new pattern. Methods have
been developed which detect a no-match pattern and store it in the
least-recently-accessed pattern. As an alternative, it can also be
stored in the least-often-used pattern. Further, there are
experiments underway which reset Hebbian2 synapses toward a
zero weight if the target fires but no input has fired for a long time.
In this way, memories will gradually weaken over time.

131

Chapter 11:
The Universal Knowledge

Store
This chapter describes how knowledge might be represented in
neurons and then in what I have named the Universal Knowledge
Store (UKS). It starts with the development of knowledge in neurons
and synapses so you can get an idea of the complexity needed to
store the variety of knowledge all of us encounter. Because of this
complexity, the development approach was migrated from neurons
to Modules for the UKS’s higher-level language approach.

After describing the capabilities of the UKS, two applications
demonstrate how these can be used. One demonstrates how Sallie
can correlate words she hears with objects she sees to learn how
words can describe objects. The other demonstrates how traversing
a simple maze is representative of a huge area of reinforcement
learning where, given some previous experience, you can choose a
course of action in any similar situation.

More importantly, this chapter shows how the Brain Simulator
can merge the abilities of a neural simulator with the power of the
computer. Obviously, all the functionality of your brain is embedded
in neurons and synapses but the computer, with its different
architecture and its own strengths, can be harnessed to great
advantage in the creation of Artificial General Intelligence.

A Brief Introduction to Knowledge in Neurons

All knowledge can be represented. This is a separate concept from
the ideas that knowledge can be learned and can be useful, which I’ll
touch on later. The idea being that representing knowledge is a
target while learning is a process toward reaching that target. As of
Brain Simulator v1.0, the development of the knowledge
representation has progressed further than the learning process.

132 Brain Simulator II: The Guide for Creating AGI

The UKS is an approach for Knowledge Representation which
represents a different approach from many neural network
proponents who create useful networks without knowing the
internal structure of the information. The advantage of the UKS
approach is that once you know how some kinds of knowledge are
represented in the brain, you can generalize the solution to any kind
of knowledge.

The Information of Knowledge

Let’s start with the idea of recognizing a face—or at least
representing the information needed to recognize a face. Every face
is recognizable because it has properties, like having eyes and a
nose, and each of those properties can have properties, like eyes can
be blue or brown (or some other color). The nose might have
properties relating to size and shape.

The Universal Knowledge Store 133

This diagram represents the most basic ideas of how you might represent the
information needed to recognize a face.

From the diagram, you can know that Bill has blue eyes and Suzy
has brown eyes. With considerable extension, you might store
enough information to differentiate any human face from any other.
You might jump to the conclusion that the circles represent neurons
while the arrows represent synapses—but it’s too soon to do that as
I’ll explain in a moment.

The facial recognition experts tell us that about 50 properties of
different values are sufficient to uniquely define a face and that an
average person can recognize 5,000 different faces. You can see that

134 Brain Simulator II: The Guide for Creating AGI

any real-world situation will be represented by a graph far too big
to show in a diagram. So we simply accept that if we can use
computers (or neurons) to implement a structure for knowledge
representation, we can implement a larger structure with any
number of faces and their characteristics, limited only by processing
speed and memory size.

Let’s make our knowledge a bit more abstract with a basic
example. Consider that all you know is “Blue is a color” and “Brown
is a color”. Now, you can answer the questions: “What is blue?” (a
color), “What is brown?” (a color), and “What are colors?” (blue and
brown).

Simple, right? Well, to do this in neurons is not so simple and I’ll
build up a network that does just this. Let’s generalize the question
just a bit by recognizing that “blue”, “brown”, and “color” have a
meaning to you but at some level are just words or ideas with
relationships to one another. Within your brain, these are just
spiking neurons with some sort of synaptic connections. In
mathematics, you might call this a “graph” which is a collection of
“nodes” connected by “edges”. To represent this simple knowledge,
you might create a graph with three nodes and some edges linking
them which might look like this.

Illustrating how certain types of knowledge can be represented in a “graph” of
“nodes” connected by “edges.”

You might say that Color is a parent node of Brown and Blue and
that Brown and Blue are Child nodes of Color. An entire field of

The Universal Knowledge Store 135

“Knowledge Representation” has grown around how you might
represent any kind of knowledge and various forms of graphs. A
node might have any number of edges, so blue objects like Bill’s eyes
can be represented by nodes with edges linking to the blue node.

To see this working on the real-world problem of face
recognition, here’s how you might store the information for a face.
You might have a parent node of Face with children Face1 (Bill’s
face) and Face2 (Suzy’s). Every Face has a nose, so you have a Nose
parent with noses 1-to-n. Each of the noses has edges to properties
like Big or Little or Wide or Thin (which could be children of a more
general Size node). Now, I can ask, “What size is Bill’s nose?” and
access the properties Little and Thin, assuming that there are other
property nodes that reference Bill as PersonX which references
Face1 and the name, Bill.

Implementing a Graph in Neurons

To implement the simple three-node color graph in neurons, let’s
start by assigning neurons to represent each of the three nodes. To
answer the first two questions, you need a synapse that connects
Blue to Color and another which connects Brown to Color. Now if the
Blue neuron fires (because perhaps you saw something blue or
heard the word “blue”), the Color neuron will subsequently fire and
you’ll know that Blue is a Color. Likewise, for Brown.

If the nodes, “Blue,” “Brown,” and “Color” were just single neurons, firing either
Blue or Brown will cause Color to fire but there is no way to connect Color so it
fires Blue and Brown.

Now to answer the third question. With just a synapse from Blue
to Color, there is no way to fire Color and get Blue to fire. If you were
to add synapses from Color to both Blue and Brown, the trouble

136 Brain Simulator II: The Guide for Creating AGI

begins. If Color fires, it causes both Blue and Brown to fire which, in
turn, cause Color to fire again which causes… so you end up with a
situation that for any input, all neurons fire indefinitely. So, we need
to add a neuron so that Color will only fire if you want to know the
parent of Blue or Brown and another which will cause Blue and
Brown to fire only if you’ve asked for the Children of Color. More
generally, by more neurons to each node, we can solve this problem.

By adding neurons to every node, you can build a complete structure so that
each node can have parents and children. The center neurons will only fire if two
or more input neurons fire. Now, if Blue AND Parent fire, Color will fire. If Brown
AND Parent fire, Color will fire. If Color AND Child fire, both Blue and Brown will
fire. Imagining that Color also has a Parent and Blue and Brown also have
Children begins to show the complexity of solving the most basic knowledge
problems in neurons.

To extend the problem just a little, we have a neuron that fires
when you see blue or hear the word, but it must be separate from
the neuron which fires for you to say the word blue, otherwise, every
time you saw blue (or heard the word), you’d also say it. So each
node also needs more neurons which determine if you’re receiving
input or creating output for that particular node. If every node can
have a parent and children, and an input and output, each node
requires four neurons and you can see the complexity building up.

Then you need another set of neurons that transfer the input to
the output so that if you do see blue, you can say, “Blue” if you want
to. I call it the “This” relationship because it answers the question,
“What is this?” Likewise, we need a relationship that transfers the
output to the input. I call this “Recursion” (labeled “Recur”) because

The Universal Knowledge Store 137

it allows you to ask, “What is the parent of this node?” followed by
“What is the parent of the parent?” You ask the first question, then
fire the Recur neuron to transfer the output of the first question to
be the input of the second, and then ask the same question again.

In the simulator, to expand the capabilities, I added short-term
memory to the input and output neurons (so each is actually two
neurons). That way, the relative timing of various inputs or outputs
is not critical.

Now, we have a basic structure with three nodes represented by
eight neurons each. Each node is represented by a number of
neurons so it can selectively have a number of different
relationships. In this case, the four relationships are Parent, Child,
This, and Recur. All the actual information is stored in the weights of
Hebbian synapses. Because any node might potentially relate to any
other, there must initially be a huge number of synapses even
though only a few may be used.

138 Brain Simulator II: The Guide for Creating AGI

Here’s a three-node graph as described if Node1 is Color, Node2 is Blue, and
Node3 is Brown. The control neurons are across the top and any number of
neuron rows (additional nodes) could be added. The actual data of the structure
is the diagonal Hebbian synapses between the nodes. In this case, Node1 is a
parent of Nodes 2 and 3 and, conversely, Node1 has the children, Nodes 2 and
3.

Let’s assume that the control signals originate somewhere
outside the structure (perhaps the hippocampus) and focus on what
this network does. If you fire the Node1 neuron, the fact that it fired
is stored in short-term memory (below Reset). To get the children of
Node1, fire Child—and voila! The child node(s) of Node1 will fire on
the outputs. Likewise, you can fire Parent to get the parents of Node1
but there are none.

Note that, as described, the network doesn’t automatically add a
reverse relationship. When we add that Color is a parent of Blue, the
connection that lets Color’s children include Blue must be done in a
separate operation—recall I haven’t focused on the learning process
in this discussion.

The Universal Knowledge Store 139

Any number of additional relationships can be added in the form
of the parent and child relationship; each one just takes an
additional column in the structure. As I built applications, I found
two more that were necessary which I named “References” and
“ReferencedBy” which can be used to represent any other kind of
properties that a node might possess. In the same way that a child
relationship is the reverse of a parent relationship, References and
ReferencedBy are also inverses.

With this structure and enough neurons and synapses, you could
represent all the information of 5,000 faces, each with 50 unique
properties. Because of the inverse relationships, you not only can
ask for a description of Bill’s face, but you could also ask, “Who has
blue eyes AND a narrow nose?”

Sequential Information

So far, I have considered only objects which have “simultaneous”
properties. When you see a face, all its attributes like eye color and
nose shape are accessible simultaneously and it doesn’t matter if you
consider nose size and shape before or after eye size or color. But
now consider language. Language requires sequential information
because the specific order of phonemes or syllables defines words
and the specific order of words defines meaning. If we think of a
word as having properties that define how it is pronounced, these
attributes must also be “ordered”—it does matter that one syllable
comes before or after the other.

To represent this, at the very least, each node needs a
relationship to indicate which node comes next in the sequence. In
neurons, this requires at least yet another relationship column. The
next node after node1 is node2.

As a programmer, I would immediately assume that because
ordered information requires a “Next” relationship, it implies a
back-reference to the previous item in the sequence, a “Previous”
relationship, in the same way that Parent implies Child. But you need
only consider how difficult it is to recite your phone number
backwards, or the alphabet, or any sentence, to convince yourself
that your brain only stores forward sequential references (next-
node) but not backward references (previous-node). On the other
hand, if you hear, “…had a little lamb,” you know it’s Mary, so there
must also be a relationship connecting the multiple nodes of a

140 Brain Simulator II: The Guide for Creating AGI

sequence back to the first node. Your brain could use this reference
to get to the beginning of the sequence and then process it forward
to any desired point.

So in development, I added a “Next” relationship and a “First”
relationship, which are used to allow any node in the graph to be
part of a sequence.

Biological Plausibility

With this structure (and three nodes), I can represent the
information that Blue and Brown are Colors and I can list all the
colors the structure contains. By extension, I can add rows of
neurons to encompass any number of nodes.

Is this biologically plausible? Yes and no.
Because you can answer simple questions about colors, a parent-

child structure with relationships must exist. Because you can
remember for the long term, these relationships must be stored in
synapse weights. Because you can remember sequential
information, some sort of structure must exist for that too. But we
don’t find orderly physical structures like these in the brain so we
must assume that the neurons which perform these functions are
interspersed with neurons doing other things as well.

That your brain implements these structures exactly as I’ve
described is unlikely for a number of reasons. Here are some
important ones:

• Redundancy—as I’ve described the implementation, the
failure of any single neuron or synapse can cause a loss of
memory. Instead, nodes in the brain likely consist of
perhaps a hundred neurons with redundant connections.

• Physical structure—the structure is very orderly and
precise and no equivalent has been discovered in the
brain.

• Multiple graphs—I’ve described a single graph but it is
likely that various graphs in the brain contain different
kinds of information—like visual and audible—and we
do know that language and visual processing occur in
different areas of the brain.

• Graph Size—the control neurons must connect to every
node in the graph, further limiting graph size.

The Universal Knowledge Store 141

• Storage and retrieval—Although possible with additional
neurons, I focused on how information is represented,
not how it is stored or retrieved, a key component of the
brain.

The objection of, “This is just too complex to be plausible,” is not
valid. Consider that a horse can walk, see, and avoid obstacles within
hours of birth. The neural complexity of those functions (which must
be “preprogrammed” by DNA) makes this graph idea seem simple in
comparison. The key is that with a node structure consisting of a
number of neurons and synapses, the structure can be encoded in
our DNA and then repeated many millions of times as the brain
develops.

I hope you can see that although the basic idea is simple, a
knowledge graph can be built of nodes and edges (or neurons and
synapses). With sufficient nodes, a graph can represent information
of immense complexity.

The NeuralGraph

Whether the specific structures I’ve described and implemented in
the Brain Simulator exist in your brain is not known but obviously,
some equivalent structure must exist because you can answer the
types of questions I gave in the examples. Within the BasicNeurons
network, there is a small demonstration graph that was built by
hand.

142 Brain Simulator II: The Guide for Creating AGI

The NeuralGraph Network implements the functionality described and requires
16 neurons per node. It includes not only Parent, Child, and Reference (called
“Attrib” here) relationships but the ability to search sequences of words so you
can input “Mary had” and get back the firing sequence “a little lamb.” The
“Recur” relationship (recursion) allows the system to take the output of one
search and use it as the input for another. The Module puts a label on each node
so you can see what the content is.

The next step in development was the creation of the Module,
ModuleGraph, which is included in the NeuralGraph sample
network. It includes a method, AddNode, which can add a new node
to the graph and add all the synapses to represent information
within the graph. It also includes demonstration methods that allow
searching by spoken input and creating spoken responses.

As implemented in the Brain Simulator, each node requires 16
neurons. Although it is no longer supported, the NeuralGraph can
provide insight into the plausibility of complex graph structures in
neurons.

The Universal Knowledge Store 143

Enter the Universal Knowledge Store (UKS)

The system described above was implemented with a Module
(“ModuleGraph”) that can create as many nodes as desired and
automatically arrange all the neurons and synapses needed to
represent it. Within the Brain Simulator’s UI, you can watch
individual neurons fire as information is stored in, or retrieved from,
the structure. This is great for a few dozen nodes but becomes
unwieldy for larger graphs. So the next development replaced the
neuron/synapse computation with a structured program within a
Module to make it easier to experiment with various ideas and
structures.

Here were my objectives for the Universal Knowledge Store:
1. Biological plausibility because it is generally equivalent to

the NeuralGraph, implemented in neurons.
2. To be able to store any kind of knowledge and relationships.
3. Require little pre-programming…with both the structure

and content being learned.

Biological plausibility is not an absolute necessity for intelligence
but, as the human brain is the only working intelligence we know of,
it seems like a logical place to start.

The Universal Knowledge Store implements a knowledge graph
of unlimited potential and complexity. It represents information as
a collection of nodes connected by edges. The Module contains only
two useful object types, a “Thing” and a “Link” which are concrete
implementations of a theoretical node and edge.

The Thing represents anything (a word, a physical object, a color,
an action, etc.), and a “Link” connects one Thing to another Thing.
While I like to think of a Thing as being analogous to a neuron and a
Link as analogous to a synapse, this is a very loose analogy, as I’ve
shown that a single Thing might require a hundred neurons in your
brain.

The Link

First, because it’s simpler, we’ll start with the definition of a Link.
We can say that a Link is “owned” by a Thing and targets another
Thing in the same way we might say that a Synapse is owned by one
neuron and connects to another. The other end of the Link is the
Target Thing.

144 Brain Simulator II: The Guide for Creating AGI

You can see that a Link is also analogous to a synapse in that it
connects in a single direction and has a weight or strength. A Link
may, likewise, include a weight that can represent the confidence or
importance of the Link. The weight of a Link cannot represent any
information such as the intensity of a color, as has been explained
previously.

In practice, most Links don’t require a weight at all. To represent
that “Blue is a color”, or any other known fact, the weight would
always be 1. Blue is either a color or it’s not (or perhaps you’re not
sure, yet). There’s a bit more to a link which I’ll cover later when I
describe learning.

As a software structure, a Link is just a reference (C#) or a pointer
(C++) to a Thing along with a floating-point weight value.

The Thing

Now for the Thing. First off, each Thing has lists of Links to other
Things. In theory, a single list would suffice but for programming
convenience, the Thing has specific lists for “Parents”, “Children”,
“References”, and “ReferencedBy” Links (more about these in a
moment).

In theory, a Thing has no content. A Thing’s meaning is inferred
entirely from the other Things it links to. If you have a Thing with
links to “red” and “square”, you know it represents a physical object.
If it also links to a Thing representing a position, you know it
represents a specific physical object. As you’ll see, I’ve taken liberties
with this constraint as well.

For convenience in creating a Tree-like structure of Things, there
is the ability to create parent-child relationships as described
earlier. Each Thing has a list of parents and a list of children. By using
a List structure, each Thing can have any number of parents and any
number of children. This way, we can represent unlimited “is-a”
relationships.

The software method which adds a parent Link to a Thing, also
automatically adds the child Link to the parent Thing. That way if
you tell the knowledge store that “Red is a color”, which adds color
as a parent of red, the UKS is immediately able to answer the “What
are some colors?” question and get red among the results.

The Universal Knowledge Store 145

A portion of the knowledge store is shown. From the parent-child
links, we could say that circle is a shape and shape is a Visual Thing.
Red and Blue are Colors and Color is also a Visual Thing.

From this representation of partial UKS content, you’ll know that at Location1,
there is an object which is a Blue Square, at Location2, there is another, at
Location3 there is a Red Circle, and at Location4, there is a Blue Circle.

Before continuing with the structure of a Thing, understand that
The Universal Knowledge Store, itself, is just a list of Things; Things
that contain links to other Things within the Knowledge Store. That
means there is no limit to the number of independent UKSs you can
have and any subset of a UKS can be treated as a UKS in its own right.

The parent-child relationships of the UKS do not necessarily
represent a formal tree structure because Things may have multiple
parent Things, there is no exclusion of circular references, and not
all the Things in the Knowledge Store must be interconnected—that
is, there could be multiple disconnected trees within a single UKS.

These next two properties in each Thing are great programming
conveniences but are a departure from biological plausibility.

Labels

Each Thing has an optional label, so when you look at debug
information about the content of the knowledge store, it can make
sense. Of course, biological neurons don’t have labels, which is one

146 Brain Simulator II: The Guide for Creating AGI

reason it’s so difficult to decode what’s going on inside your brain.
Without Labels, Things are just lists of Links and it’s a tough task to
trace the Links to figure out what a Thing is. So, with a Thing labeled
“Physical Object” with children which are all physical objects, it’s
easy to say with certainty that a specific Thing with that parent is a
physical object too.

A single line of code can find any Thing based on its label.

Thing t = UKS.Labelled(“Physical Object”);

So you can get a list of the children of a Thing with:

List<Thing> physObjs = UKS.Labelled(“Physical Object”).children()

and immediately get a list of all the physical objects in the UKS.

All the child Things typically have some short labels with a sequence
number (like Object1, 2, 3) so when you examine such a Thing, you
immediately know it’s a physical object and roughly when it was
added to the UKS without having to trace any Links.

Values

As I mentioned earlier, there are deviations from the idea that
nodes contain no information. There is no plausible way to add text
or a precise numeric value to a node built from neurons. The mental
exercise of considering a graph where none of the nodes has any
content will give you a better insight into how your brain must work.

In a computer, though, to know how to spell a word, we simply
store a text string. In your brain, since neurons obviously don’t
support text strings, there must be an ordered list of links to other
nodes which represent individual letters. These Letter nodes must
have links to other nodes which define the strokes you’d need to
write them, the utterance you need to speak when spelling a word
out loud, and a definition of patterns of visual input so you can read
them. You can see that the complexity needed to store something as
simple as a word in a biologically plausible structure can be
daunting.

In the UKS, each Thing can have a “Value” which can be any data
type—a number, a text string, a vector, a color, etc. The Value has

The Universal Knowledge Store 147

been used to store a data item needed to make the program run as a
shortcut to speed development. For example, to store color
information, rather than deciding today how the brain might
represent color information, the UKS simply stores the raw RGB
levels into the Value and the question of the internal representation
of color is deferred to a future development iteration. There are
several ways that color could be stored in neurons but deciding
which way to do it is not as important as being able to use color in
other processing.

The key for these two properties, the label, and the value, is that
as UKS applications are developed which rely on them, we know
we’re cutting corners on the biological plausibility front. This may
mean that we may need to re-think the algorithm down the road or
that conversely, we’ve implemented a mechanism that can give the
Brain Simulator an efficiency edge over its biological counterpart.

References

In addition to Parents and Children, each Thing has a list of Links
named “References” so a Thing can reference any number of
property Things. A physical object may reference Things
representing color, texture, shape, size, location, etc. but it also may
reference Things which are words and phrases that describe the
object verbally. Like parent-child, References are mirrored with the
ReferencedBy list. The UKS can easily determine not only the color
of a Thing, by searching the reference list for a child of Color Thing,
but also what other Things have the same color by subsequently
following that Color’s ReferencedBy list. I should reiterate that this
type of back-reference is a great convenience for software
development but cannot be implemented with the biological
synapses of a single neuron. It requires multiple neurons and
multiple synapses for a brain to function equivalently.

In yet another departure from the biological, References lists may
be “unordered” or “ordered”. As an example, the attributes of a
physical object all exist simultaneously so are unordered. On the
other hand, the words of a phrase must occur in a particular order
or the meaning may be lost. The shortcut of an ordered list also
requires a “currentReference” variable which keeps track of where
processing is in the list of ordered references. To speak a phrase,
currentReference is initially set to the first word reference in the

148 Brain Simulator II: The Guide for Creating AGI

phrase and is advanced to the next as needed so the word sequence
can be spoken at a reasonable rate. To speak each word, each word
Thing’s currentReference keeps track of the phoneme which has just
been spoken.

For bookkeeping purposes, each Thing also has a “use count”
which tracks how often a Thing has been accessed. Also, each Link
keeps track of “hits” and “misses”. These can be used together to
determine which Links are important references and which may be
irrelevant. That way, the system can figure out that three sides make
a triangle independent of what color it might be.

The UKS and Neurons

Everything about the UKS described so far is independent of any
Brain Simulator neurons. It’s just a data structure that is somewhat
biologically plausible. To extend the UKS into the Brain Simulator’s
neuron domain, an extension called UKSN adds two neurons to each
Thing, one representing its input and the other its output. So, for
example, neurons firing in the SpeechIn module can be connected to
UKSN input neurons and corresponding output neurons can be
connected to the SpeechOut module. This way, the UKS is accessible
with the speech interface using the Brain Simulator’s standard
synapse connections.

The UKS and AGI

One of the underlying tenets of Brain Simulator development is that
in order to create General Intelligence, an AGI needs to represent
and merge information from widely disparate sources and types. To
represent something as simple as “Things fall down,” you need to
understand about physical things, have seen things fall (an action),
know about sequences of actions, have heard and learned the
associated words…and on and on.

Although still in its infancy, the implementation of AGI on the UKS
can represent all this information in a useful way. As previously
described, the organization of data within the UKS is governed by
Links, so changing a few Links can completely alter the structure of
the information.

With the caveat that the organization of information can be
changed easily, here is the current organization of information
needed to implement AGI:

The Universal Knowledge Store 149

• Sensory—information from an AGI’s various senses.
• Relation—allows sensory information to be stored. The brain

doesn’t represent absolute information, it knows that various
attributes are the same, different, greater, smaller, and a host of
other relationships.

• Action—things that an AGI can do. There will be simple actions
(speak a Phoneme) that can be combined into complex
sequences (sing a song while dancing).

• Events—combinations of senses such as landmarks (a
combination of visual or other inputs) or words heard along
with references to actions and outcomes.

• Outcome—the current state of the AGI relative to its internal
goals.

The top-level organization of the UKS for an AGI might look something like this.
The Sensory and Action areas are fairly obvious as they correspond to known
areas of the brain—the sensory and motor cortexes. Events (as described later)
are the memories that combine sensory input with an action taken which led to
an outcome. They are necessary to determine which action to take next.

The AGI maintains an internal mental model but this isn’t so
much a Thing as the collection of recent sensory inputs combined
with physical positions.

The combination of this information gives rise to the possibility
of Reinforcement Learning. In a specific situation, an AGI takes an
action that results in an outcome. If the outcome was positive, then

150 Brain Simulator II: The Guide for Creating AGI

in a similar situation, the AGI will take a similar action. If the
outcome was negative, the AGI can choose a different action instead.

The UKS Dialog

To develop UKS applications, you need to know what’s going on and
there is a dialog that lets you view and drill down into the structure
and content of the UKS.

The content dialog can expand lists of children and references.
Each Thing’s label is shown, followed by the use count and the
Thing’s value if it has one. When auto-refresh is enabled, you can see
the structure, use-count, and values changing as the UKS evolves.

The dialog display of the UKS content shows a tree structure that can be
expanded with mouse-clicks to show children and any References. After the label
of each Thing is the use-count and the Thing’s Value if it has one. In the lower
right, you can select any labeled Thing to be the root of the display. Since the
structure of information within the UKS is created with Links, it can be modified
easily and at any time. With auto-refresh set, the display will immediately
update to reflect the current structure and content of the UKS.

Summary and Future Development

The UKS is a powerful general-purpose graph structure that is
biologically plausible because it could, potentially, be implemented
in neurons. It can store any kind of data and may work in an entirely
brain-like way.

The UKS applications demonstrate two learning methods:
Correlation and Reinforcement. In the Vision application, Sallie
correlates words heard and objects seen to infer which words

The Universal Knowledge Store 151

describe which objects. In the Maze application, Sallie builds a
structure where she can decide which action to take in a given
situation to achieve a goal. In both instances, the learning is “one-
shot”, so a single presentation of information is sufficient. The
software could easily be modified so that it would only learn
progressively over several presentations—this would make it more
life-like but not necessarily better. An inherent advantage of the
computer over the brain is its ability to store information, reliably,
in a single operation.

The UKS is a prototype that demonstrates the feasibility of
implementing such a system. The software within the Vision and
Maze applications is specific to the problem and no effort was made
to make it general purpose. Now that these applications (and a few
others) are working, we can examine the commonality of their store
and search functions to find a more generalized solution in these
areas as well. Adding these abilities will go a long way toward
building a General Intelligence system.

The UKS stores everything. At some point with more complex
problems, this will become an issue and a selective forgetting
algorithm will be needed.

The UKS is fast enough to support the small demonstrations so
far. As progressively more complex problems (and generalized
solutions) are addressed, we can assume that performance will
become a bottleneck. As the current implementation is single-
threaded, it doesn’t benefit from multicore or multicomputer
operation. There are several ways to address this issue.

The early implementation of the UKS in neurons gives an
indication of the maximum scale of the human neocortex. With the
neocortex’s 16 billion neurons, using the NeuralGraph’s 16 neurons
per node puts an absolute maximum capacity of one billion nodes.
Using a more plausible 100 neurons per node yields 160 million
nodes. Observing that the neocortex is not 100% devoted to this
form of storage, it is reasonable to assume that the neocortex is
limited to fewer than 100 million Things. While this might sound like
a lot, from a computer/data perspective it isn’t much data at all.

On the other hand, it may be possible to demonstrate AGI with far
fewer nodes. If your UKS can only represent 1 million nodes, for
example, could it manifest AGI? Obviously, if it’s a million nodes of

152 Brain Simulator II: The Guide for Creating AGI

knowledge specifically about French Literature, then no. But if a one-
million node UKS has more general knowledge, then perhaps.
Relative to an average person, it would have a limited vocabulary, a
limited number of objects it can recognize, a limited number of
possible actions and interactions with those objects, a limited ability
to plan. Nonetheless,it might still seem intelligent.

That’s the intent of the UKS. All-in-all, the UKS forms a powerful
platform for AGI research.

Video Links

“Representing Knowledge in Neurons”
http://futureai.guru/videos?id=116

“Introducing the Universal Knowledge Store Pt 1”
http://futureai.guru/videos?id=121

“The Universal Knowledge Store Pt 2”
http://futureai.guru/videos?id=122

http://futureai.guru/videos?id=116
http://futureai.guru/videos?id=121
http://futureai.guru/videos?id=122

153

Chapter 12:
The Simulator,

Mental Model, and Planning
The real world is complicated. The way our senses receiving
information, there is always ambiguity, errors, and noise which
cloud our interpretation of reality. There are no programs today
which can interpret input from the real world as well as the human
brain—we can expect that to change soon. In order to move forward
with software development, rather than coping with somewhat
random, non-repeatable inputs from the real world, the Brain
Simulator includes simulator Modules which can provide input with
any desired level of complexity with noise-free, unambiguous,
repeatable input.

One impediment to interpreting real-world input is that your
brain doesn’t just look at its input but builds an internal mental
model of your surroundings. Your brain has to work hard to create
and maintain that model, but in a computer, it’s much simpler. In the
same way that the nearly 60 billion neurons which control your
body’s movement can be replaced with a few microprocessors,
building an internal mental model is much easier with a computer
than with neurons.

The key is that building on the abilities of the UKS, building an
internal mental model is straightforward. Similarly, the planning
process can involve modeling so it’s built as an extension of the
mental model. Other types of planning are also just extensions of the
UKS.

This chapter details how these functions are currently
implemented in the Brain Simulator.

The Simulator

The Brian Simulator contains two simulation Modules, a 2D
simulator and a 3D simulator. The reasoning is that if Sallie can’t

154 Brain Simulator II: The Guide for Creating AGI

comprehend the simpler 2D world, she won’t comprehend the 3D
world either so it’s best to start with the simpler environment. In
both simulators, Sallie can move about and “see” objects in her visual
field. The simulator receives information from Sallie’s physical
functions and updates the visual inputs accordingly.

The Simulator surrounds Sallie. At one end, it can create information for all of
Sallie’s inputs (senses). At the other, it receives Sallie’s actions and updates the
simulation to fit. For example, Sallie can move a physical object and this motion
is reflected in the touch and vision inputs.

The 3D simulator uses the computer’s graphic capabilities to
project what Sallie would see from any given position and
orientation. The simulator currently supports flat, rectangular
objects. No collision or object motion is currently implemented.

The 2D simulator has received much more development effort. It
detects collisions between Sallie and the physical objects in the
environment and these can not only move the objects but provide
input to Sallie’s various touch sensors. The 2D simulator includes its
own physics to support collisions between objects so if Sallie moves
objects there is some representation of friction and a center of mass.
Further, if one moving objects collides with another, the second
object will move as well.

The Simulator, Mental Model, and Planning 155

The only physical object type the 2D simulator supports is a line
segment. This simple object is sufficient to exercise numerous
intelligence features. Sallie can plan routes, move objects, create
structures, and a myriad other possibilities. Each physical object has
properties of color and aroma and some objects can move on their
own (think birds). When Sallie touches an object, she receives
accurate information about it’s relative position and orientation and
whether she is touching near its end. Aroma, on the other hand,
generates a field which declines over the distance from the object.
This feature has been used to emulate food. Sallie can follow the
direction of increasing aroma strength to get to a destination. To be
compatible with the 2D environment, special 1D retina Modules
have been created. These can use binocular vision to estimate this
distance to visual objects.

For object input, the 2D module has an abstract array of neurons
and objects are represented by synapses connecting neurons. To
manually add an object to the environment, simply add a synapse.

This simulator can also create audible input. Currently, this is in
the form of phonemes which describe objects in Sallie’s visual field.
With this input, Sallie can learn to associate words with colors. With
the simulator’s feedback, Sallie can learn by imitation to put together
intelligible sequences of phonemes to create words and so verbalize
about what she sees.

Sallie will appear to “comprehend” the limited 2D environment if
she can move objects around to accomplish a goal and verbalize
about her actions. To do this, she must have learned about the
physics of objects within the simulator, have the ability to plan for a
future, and have the ability learn from her own trial-and-error
experimentation—much like a toddler. Once Sallie has mastered the
2D environment, spicing the 2D simulator’s features into the 3D
simulator will be straightforward. Likewise, eventually replacing the
3D simulator with cameras and microphones on a mobile platform
is the logical next step.

The Dialog

The 3D simulator dialog shows the visual field as Sallie would see
it.

156 Brain Simulator II: The Guide for Creating AGI

The 2D simulator dialog is much more sophisticated. It shows
Sallie’s position and orientation within her environment. Sallie’s two
mobile arms indicate the positions of her touch sensors.

The 2D Simulator dialog box shows Sallie’s location and orientation in her
environment. The array of neurons to the left shows how the white synapses are
used to create physical objects in the simulator.

At the top of the dialog, “Set Model” is a shortcut which places the
object information directly into Sallie’s internal mental model (see
below) skipping the visual system. This is useful for testing to
eliminate the errors and ambiguities inherent in the vision system.
Two arcs (optional) represent the information in her field of view as
the information going to her two retinae.

The “Obj Spd” slider controls the speed of objects which have
inherent motion. To make an object mobile, set its synapse weight to
a value less than 1 with a positive weight moving in the X direction
and a negative value moving in the Y direction. With the speed slider
centered, there is no motion. Setting the slider to the right sets
mobile objects moving in a positive direction and vice versa.

A right mouse-click can direct Sallie to move to a specific position
by setting a target position in the ModuleGoToDest Module. This is
used in the “Imagination” Network. If the Module does not exist in
the current network, right-clicks are ignored.

The Simulator, Mental Model, and Planning 157

The Internal Mental Model

What you see isn’t the input from your eyes, it’s the content of your
internal mental model. If your eyes dart around, you don’t perceive
motion in objects around you. You assume that surroundings are
generally static as you move through surroundings. At the same
time, you can have a pretty good idea of what’s behind you without
looking. The level of detail is not nearly as good as it is within your
visual field but you certainly presume that objects continue to exist
even when you can’t see them.

Given that the UKS can store any kind of information how do we
store an internal mental model and how does this compare with how
your brain does it? If you have a UKS filled with abstract knowledge
about objects and their relationships, (perhaps books), how do we
instantiate a specific book and place it in some specific location
relative to ourselves. You can see a book in front of you. Now turn
around. You’ll know the same book is behind you, you’ll know about
what it looks like and how far away it is.

The key is to allocate a new object for each instance of a book
which you can see. Each book object can have additional attributes
like spine color and the key to modeling is that it carries a location
as one of its attributes. These instantiations are children of a Thing
labelled “Phys Objects”. In the event physical objects have a specific
location, the location is a child of World Model. I’ll cover how
locations are stored and manipulated momentarily. The location is
always relative to a center point which is the point of view of the AGI.

158 Brain Simulator II: The Guide for Creating AGI

This diagram shows how the UKS can represent a world model with instances of
physical objects.

Now, for a list of all the objects you currently know the location
of, you just need to enumerate the children of World Model.

Moving and Rotating

Thus far, everything has been properties of the UKS itself. But as
the AGI moves through its environment or changes it orientation, all
the locations need to be updated accordingly so they will remain
correct relative to the point of view of the AGI. This is done with just
a bit of trigonometry. All the locations which are children of the
World Model are updated with every motion.

The PointPlus

As I mentioned in the UKS description, every Thing can have an
arbitrary data object attached to it and locations use the PointPlus
object. This is a point object which can be accessed or updated
equally in either cartesian or polar coordinates. So to rotate the
world view, you need only add to or subtract from the direction of
every location in the world model. To move (forward) you need only
subtract from the X coordinate of every location in the world model.

Internally, the PointPlus keeps both types of coordinates but only
updates them as required. That is, if the polar direction is changed,

The Simulator, Mental Model, and Planning 159

the cartesian coordinates are not updated until the values are
needed and vice versa. This means that repetitive direction changes
or motions can be handled with simple addition without any
trigonometry. Trigonometry is only needed if rotations and
translations are interspersed. Given the relatively small number of
objects which must be maintained in the world model, the amount
of computation is insignificant.

For current experiments, the relative direction is represented by
a single horizontal angle and so is a 2D position. The direction could
easily be extended to be a horizontal direction and an elevation
angle so as to represent 3D positions.

The angle to any object is based on a specific pixel location in the
visual sensor and so have consistent accuracy. But because distances
are estimates based on binocular vision, their accuracy decreases
with objects which are further away. The PointPlus also carries a
“confidence” value which represents the expected error variability
of the distance value. As the AGI sees an object again, it is likely that
the distance value will be slightly different. The confidence value is
used to determine whether the internal value should be updated to
the new, sensed value. That way, if an object is seen at a large
distance, there is likely to be a significant error and the confidence
is low. As the AGI moves closer to the object, new values come in
with better confidence and the internal values are updated. As the
AGI moves further away, new incoming values will have a lower
confidence so the internal values are not updated. Values received
from the touch sensors have the highest confidence.

Imagination

There are two ways that the Internal mental model can be used for
imagination.

1. Imagining a different point of view
2. Seeing “imaginary” objects

Both these mechanisms have been implemented in the internal
model. The first is used in the Imagination network as Sallie
imagines what she would see from various alternative points of view
and moves to that point if she can see her destination from there.

160 Brain Simulator II: The Guide for Creating AGI

The second has been implemented and will be used for planning
as that process is generalized.

The Dialog

The dialog associated with the Module2DModel displays the
current content of Sallie’s internal mental model from her point of
view. As Sallie moves and turns, the content of the model is updated
and displayed so that objects in front of Sallie are always upwards in
the dialog display.

Each segment is shown in the color Sallie has seen and is
displayed with white ends which indicate the confidence or accuracy
in the position of the object. Because Sallie’s vision emulates
binocular vision, the angular accuracy of any point in the model is
constant but the distance accuracy degrades substantially with
distance to the object. Longer white portions indicate lower
accuracy. If an object has been touched, this is the most accurate
possible position and there will be no white portion.

The dialog for the Internal Model Module shows the physical objects Sallie
knows about and are shown from her point of view. In this case, there are
objects in the simulator which are not in the model because Sallie hasn’t seen
them yet. The white ends indicates the confidence/accuracy of the distance
value to the objects. The longer white ends on the right-hand object indicate
lower confidence because the object is further away.

The Simulator, Mental Model, and Planning 161

Planning

Planning involves internally simulating a sequence of different
possible actions in order to achieve a goal. But first, you need to learn
about the individual actions and their consequences. The
development of this process in the Brain Simulator is still in its
infancy and is used in the Maze application (below).

The key is learned abstract structures within the UKS which tie
together a situation, an action taken, and the outcome. If these are
taken individually, an organism can evaluate its input, find the best
match among its stored situations, then choose the action which led
to the best result. In this manner, an entity can learn any number of
situations of any desired complexity and relate them to actions, also
of any desired complexity. This simple process can explain the
behavior of animals which can be trained to respond to relatively
complex commands with relatively complex behaviors.

The process can be extended by adding the mental mechanism so
that a sequence of actions can lead to a goal. So if a chimpanzee
knows that standing on a block raises it up, and knows that stacking
one block atop another creates a taller block, then it can envision
stacking multiple blocks in order reach the bananas at the top of the
enclosure.

The implementation of planning within the Brain Simulator does
will be expanded to offer this level of generality. Current solutions
are purpose-built for a specific application but the UKS structure and
internal model are intended to allow for this generalization.

Application 1: Vision, Associating Words and Objects

Two prototype applications have been created to illustrate how the
UKS can be used to build intelligent behaviors. In the first, Sallie can
be directed to move freely around her simulated environment and
look at Things. At the same time, simulated voice input periodically
says the color of the object she is looking at (e.g., “This is red.”). While
other Modules process the voice and vision functions, the focus here
is on how the UKS is used.

As Sallie moves about the environment, objects she sees are
interpreted into segments with a color that she can see. These are
stored in the UKS in terms of Segment Things (children of “Segment”

162 Brain Simulator II: The Guide for Creating AGI

which is a child of “Shape”). Each segment has references to two
Point Things (also children of “Shape”) and a Color Thing (a child of
“Visual” which is a child of “Sense” along with “Audible”). Every
point she sees can be represented in terms of an angle (from
straight-ahead) and a distance, which is estimated from her
binocular vision. These are stored as PointPlus values on the Point
Things.

As she moves and rotates through her environment, all the
PointPlus coordinates can be updated with her motion so they are
always up-to-date. Sallie can easily determine if an object she sees is
the same as one she has seen before.

In this view of the Brain Simulator, the left window shows the Environment
Simulator and Sallie’s position within her environment. The center window
shows Sallie’s internal mental model of the world from her point of view; the
display represents the UKS content of shapes and colors. The two rows of
neurons below represent Sallie’s visual field; she can see blue at the left and
magenta at the right. The right-hand window shows the content of the UKS
including colors which she has seen. Color c3 is expanded so you can see that it
is referenced by the shape s3 and has correlations with words she has heard.
You can see that the word wRed has the best correlation with the color c3.

This forms the basis of Sallie’s internal mental model. It’s not so
much a Thing, but the collection of recently-seen objects. All the
points she knows about automatically update themselves as Sallie
moves and rotates within the environment. There is an optional
display window of Sallie’s internal mental model, but it simply

The Simulator, Mental Model, and Planning 163

accesses the current state of the Things in the visual memory portion
of the UKS. It displays them so the AGI developer can gain insight
into Sallie’s internal mental state. You can see the same data
changing within the tree-view dialog box but it doesn’t make as
much sense as the graphical display.

The Environment Simulator periodically speaks to Sallie, telling
her the color of the object in front of her with the phrase, “This is
[red]”. This is added to the UKS as Phrase Things, which have
ordered references to Word Things. Because Sallie can see more
than one object at a time, there is some ambiguity in the
announcement, and the words “This is” are extraneous to the
meaning. Over a period of samples, Sallie can correctly associate
color names she hears with the colors she sees. She learns that the
“This is” is irrelevant because it is heard with everything and so has
no differentiable meaning. Whereas the color names associate
specifically with different objects she sees.

Application 2: Maze / Learning by Trial and Error

There are plenty of ways for a computer program to solve a maze.
This approach is interesting in that it utilizes the UKS and builds a
structure within the UKS that can be generalized to a wide variety of
intelligent behaviors.

This maze in Sallie’s environment illustrates how the UKS can be used to keep
track of landmarks. The Event/Action/Outcome triples stored in the UKS form
the basis of reinforcement learning.

The content of the maze is programmed directly to the UKS in the
structure of segments, points, and colors as described above. This is

164 Brain Simulator II: The Guide for Creating AGI

done so that possible vision errors can be excluded from the
behavior process. Further, the maze is orthogonal so at each
decision point, a limited set of action choices is possible.

As she explores the maze, Sallie remembers “Landmarks” which
are Things that reference nearby segments. Unlike the segments in
the previous demonstration, these Landmark Segment positions are
static and do not update their position when Sallie moves about.
That way, Sallie can know when she has returned to a landmark
where she has been previously because she can recognize the fixed
objects.

At each landmark where a decision can be made, Sallie creates an
Event Thing that references the Landmark. Children of the Event
Thing are action/outcome pairs—each references an action Sallie
took and the outcome which subsequently occurred. She then takes
a random Action (RTurn, LTurn, GoS, UTurn) and creates the
action/outcome Thing as a Child of the Event Thing. She then
proceeds until she reaches another possible decision point or is
blocked at a destination.

If she is blocked, she remembers this color as the outcome of the
current action/outcome pair. She makes a UTurn and continues on.
If she instead reaches another new decision point, she creates
another Event Thing in the UKS and uses that as the reference. If she
reaches an Eventshe has previously visited, she can select a random
action from those she hasn’t tried before and continue the process.

Eventually, she learns all possible actions for all events. At that
point, the entire maze has been traversed and the event list is
complete.

The Simulator, Mental Model, and Planning 165

This view of the UKS after Sallie has explored the maze shows that Sallie has
encountered 10 decision points or “Events.” E0 is expanded so you can see that
it is related to landmark Lm0 and at that point, Sallie tried four different actions.
For example, she took a right turn which led to the event E1 and she went
straight and reached the goal color c12.

Now, given a goal color, the UKS can be searched for all Event
Things that have a child which references the goal color. These
events are also searched (similar to using the Recur relationship)
until eventually the current Event (where Sallie is now) is
encountered and Sallie takes the action associated with the
Action/Outcome pair which led toward the goal.

Here are a few important component points to consider:
1. Everything needed to create data structures of essentially

unlimited complexity exists in the basic UKS structure. Recall
that the UKS can be implemented in biologically plausible
neurons.

2. What I’ve called the action/outcome pair is actually a triple
when you take the Event into account; an event/action/outcome
triple. In general, any intelligent entity considers its current
situation in terms of similar situations from past experience and

166 Brain Simulator II: The Guide for Creating AGI

then takes the action which leads to the outcome that best
approaches its current goal.

3. Finding your way based on recognizing landmarks is a
biologically likely approach.

4. The brain can use event/action/outcome triples repetitively to
achieve a goal but usually can only consider a few steps toward
a goal. The computer has the tenacity to consider unlimited steps
to achieve its goal.

5. The Event Thing can be as complex as necessary. In this
implementation, it is limited to being a landmark consisting of a
half-dozen segments because of limitations in the maze design.
In the brain, not only could landmarks be significantly more
complex but the event could consist of any number of diverse
factors…anything the mind can sense or feel could be inputs to
an event.

6. Similarly, since the action and outcome are Links to other
Things, these could also be significantly more complex.

7. The maze in this demonstration looks pretty simple because you
can see it all at once (as from above). If you instead put yourself
in Sallie’s position and think of this as, perhaps, a hedge maze, it
would tax the limits of the human brain’s abilities. If there were
a unique goal for each endpoint, I, certainly, would be unable to
go directly to any goal endpoint from any other without error.
This maze contains only ten decision points (Events).

The structure of Event triples can be generalized to form the
underpinning of what is called “Reinforcement Learning.” In all
situations, you remember what action you took in that situation and
what outcome you received. The outcome might be simplified to a
reward or punishment but in general, the situation, the action, and
the outcome can all be complex. Subsequently, this structure would
be pruned to eliminate situations that are similar, actions that led to
indifferent results, etc. Alternatively, results that represent
significant improvements or detriments could be made more
important.

Video Links

“How Sallie Learns & the Universal Knowledge Store”
http://futureai.guru/videos?id=123

“How Sallie learns with Reinforcement Learning”

http://futureai.guru/videos?id=123

The Simulator, Mental Model, and Planning 167

http://futureai.guru/videos?id=124

“Short: Navigating a Maze”
http://futureai.guru/videos?id=140

http://futureai.guru/videos?id=124
http://futureai.guru/videos?id=140

169

Chapter 13:
Brain Simulator Performance

on
Multicore and Multiserver

Systems
This chapter is adapted from an academic paper and contributes to
an estimate of the computer power required to emulate the entire
human neocortex with the Brain Simulator II by implementing and
measuring the performance in a single multicore computer and in a
cluster of networked computers. The results are extrapolated to the
scale of the neocortex based on measurement of the computational
performance on the single machine and the network traffic needed
for server-to-server transfers. Algorithmic improvements are
identified for future implementation.

The spiking neural model is based on observations of biological
neurons and differs from most ANN algorithms in two important
ways: 1) the array of synapses for any neuron is sparse and 2)
significant processing is only needed for neurons that fire. These
both contribute to the performance achieved on a single CPU which
is RAM-speed limited. On the other hand, the sparse synapse array
makes this algorithm less amenable to GPU acceleration.

In general, computational performance scales linearly with the
number of active synapses because the number of synapses is large
relative to the number of neurons. Importantly, although
computational and RAM requirements scale linearly with the
number of synapses per neuron, network data requirements for
machine-to-machine transfers generally scale with the number of
neurons simulated on an individual server.

170 Brain Simulator II: The Guide for Creating AGI

As the performance is directly related to the number of synapses
per neuron, we’ll examine the relationship between the number
observed in the biological brain vs. the likely number needed in the
simulation. The computer can allocate new synapses quickly while
the brain cannot (both can adjust weights quickly). This means the
brain must include a large proportion of near-zero-weight
“synapses-in-waiting” to be used when the need arises. The
computer need not simulate these because they can be allocated
quickly when needed.

The overall conclusion is that a model of the complete neocortex
could be implemented on today’s hardware. The specific number of
machines required depends on the number of synapses per neuron,
the complexity of the neuron model, and whether the intent is to
emulate in real time, or slower or faster by some factor. A sample
calculation is done for 160 servers.

Background

While focusing on the performance of algorithms in multicore and
multicomputer configurations, some neuroscience information is
necessary to describe the scope of the problem. Overall, the brain
will exceed the performance of any single CPU for the foreseeable
future, so this chapter estimates the issues in processing across
multiple parallel CPUs.

Throughout the chapter, it should be noted that most biological
measurements are approximations with only one or, at best, two
significant digits. This section also describes values selected for
subsequent estimates to help define the scope of variability in the
estimates.

Neuron Function

As described previously, the neuron is essentially a digital device
in that neural spikes are about the same size and variations in spike
shape are considered noise. Relative spike timing is usually
considered its only variable feature, and this is also subject to a great
deal of noise (jitter). The amount of charge contributed by a synapse
is limited to approximately 100 discrete values [Montgomery].
Although neurons are often described in terms of the continuous
mathematical functions relating to membrane diffusion, exponential
charge decay, etc., discrete approximations for these functions are

Performance on Multicore and Multiserver Systems 171

used in this presentation which likely exceed the accuracy of
biological neurons because of the high noise levels in the brain
[Faisal].

Neuron Performance

Although the function of a neuron can be measured
electronically, it is misleading to think of the neuron as an electronic
device. Instead, it relies on the physical transport of ions or changes
in their orientation and thus works in timeframes of milliseconds—
a billion times slower than today’s electronic components. The
maximum expected firing rate for a neuron is about 250 Hz but this
is not sustained, as neurons in the neocortex are estimated to fire
only once every six seconds on average [Grace, Lennie]. This low
average firing rate will be important in calculating the number of
neurons that fire vs. the number emulated on a single server.

The length of the axon is variable and, in neurons that transfer
signals to the human body, may be over a meter in length. Within the
brain, axon lengths can be loosely grouped into “long”, with lengths
averaging 100 mm, and “short” with lengths averaging 10 mm
[Braitenberg]. This categorization will be important in estimating
the number of axons in a computer model which cross a boundary
between one physical computer and another.

Nerve conduction velocity for unmyelinated short axons is also
quite slow at just a few m/s (walking speed). This means that the
signal propagation from the cell body to the destination synapses
may take several milliseconds, and this should be taken into account
when estimating the necessary timescale resolution of the
simulation. In estimates, a 2 ms per neuron cycle is used.

Learning in biological neurons is not fully understood, although
Hebbian learning is known to adjust synapse weights based on the
near-concurrent firing of connected neurons. Other learning
mechanisms may also exist but learning only affects a tiny portion of
synapses at any given time. For example, once learned, the synapses
involved in reading or understanding language cannot change
substantially or one could forget these abilities rapidly if they were
not used/reinforced. While one might learn new words, most
learned words, the recognition of characters, etc. are seldom
modified.

172 Brain Simulator II: The Guide for Creating AGI

Useful Synapses

At its destination, the biological axon branches out into as many
as 10,000 synapses. The number of synapses that must be emulated
will be smaller than the number measured in the neocortex by a
substantial factor for several reasons.

The computer can allocate new synapses quickly while the brain
cannot. Biological synapse weights can be modified in tens of
milliseconds while synapse creation and migration happen over
periods of hours and days. This means the brain must include a large
number of near-zero-weight “synapses-in-waiting” to be used when
the need arises by adjusting the weight. The computer doesn’t need
to simulate these because additional synapses can be allocated
quickly when needed.

Future confirmation of this hypothesis and the value of this factor
could be estimated from the distribution of synapse weights within
the neocortex, which is not presently known. It is also likely (but not
yet observed) that multiple parallel synapses are needed to create
an effective high synapse weight (again, the distribution of synapse
weights would be useful). In a simulation, these multiple synapses
can be consolidated into a single synapse with a weight equal to their
sum.

For the simulations, a factor of 100 is used, meaning that instead
of 10,000 synapses per neuron, only 100 are simulated. The effect of
this factor is clearly stated so adjustments can be made easily to the
overall estimates.

Further, for any of these synapses-in-waiting, separate synapses
are required for those which are potentially excitatory and those
which are inhibitory. These different synapses act with different
neurotransmitters and cannot easily shift from one to the other.
Since the computer can easily change the sign of a synapse weight
from positive to negative, these multiple synapses are not needed.

Although not addressed in this chapter, a similar factor may
likewise be applied to the number of neurons to be simulated. As
mentioned in the Universal Knowledge Store chapter, we speculate
that 100 neurons are used in the brain where we can only identify
16 as being needed. The brain may contain many redundant neurons
for reliability while the computer may be able to ignore these and
simulate just one because it is much more reliable. Further, the

Performance on Multicore and Multiserver Systems 173

computer may be able to simulate clusters of neurons easily to
eliminate the need for substantial numbers of individual neurons.
One might conclude that a full neocortex simulation might be
accomplished with many times fewer neurons than the brain
possesses.

The Brain’s Connection Count

The human brain can be considered in three parts: the brainstem
which is largely responsible for autonomic functions; the cerebellum
which is responsible for muscular coordination; and the neocortex
which is responsible for higher-level functions. This chapter will
focus specifically on the neocortex.

The neocortex contains about 16 billion neurons which are
concentrated near the convoluted outer surface while the interior
consists of a mass of axonal connections. If smoothed out, the
neocortex would roughly be a disk with an area of 2,600c m2 (a 250
mm radius) as shown in the figure. In the neocortex, the neurons are
in several layers near the surface but for the purpose of these
calculations, the layering can be ignored with all the neurons
assumed to exist in a single layer.

The neuron density is therefore 16 billion/2,600 cm2 or
~60,000/mm2 or (linearly) ~250 neurons/mm. With the average
short axon length of 10 mm, we can expect that neurons routinely
connect to others that are 2,500 neurons away or more. The
flattening of the simulated neocortex will make more columnar
axons shorter as they don’t leave the plane of the outer layers and
then return. But it will model others as longer if they connect from
one fold to another. A length of 10 mm will continue to be used for
estimation.

174 Brain Simulator II: The Guide for Creating AGI

The neocortex can be modeled as a disk of neurons with the two hemispheres
being largely independent. Each with 8 billion neurons, they are connected by
the 300 million fibers of the corpus callosum which represent the ~100mm-long
axons of their respective neurons. Within each hemisphere, the number of axons
crossing any particular boundary can be estimated by considering a line of
neurons forming a perpendicular to the boundary and multiplying by the length
of the boundary or about 200,000 axons/mm of boundary length (in each
direction).

We can use these factors to estimate the number of axons that
cross any given boundary within the neocortex, which will be
necessary to estimate the number of signals which will transfer from
one computer to another in a multiserver configuration. The
likelihood that any randomly oriented 10 mm axon crosses a
boundary is given by:

where d is the distance from the neuron to the boundary (in mm).

This is the portion of a circle of radius 10 mm centered on the neuron
which crossed the boundary.

Since the neuron can be anywhere from 0 to the axon length away
from the boundary, summing these probabilities along a line of
neurons perpendicular to the boundary (as in the inset in the figure)
leads to the expectation that any row of neurons will likely present

Performance on Multicore and Multiserver Systems 175

approximately 800 axons crossing the boundary or 200,000
axons/mm of boundary length.

In a neocortex hemisphere, any radial slice through the neocortex

can be expected to be crossed by 50 million axons. This figure will
be used to estimate the amount of data to be transferred from
machine to machine if the neocortex were subdivided into multiple
sectors. Long connections serve to increase the data transfer
requirement.

The Simplest Neural Algorithm

The simplest neural algorithm is “Integrate and Fire” [Abbott] which
is given by equations 3, 4, and 5. Numerous features could be added
which make the algorithm more biologically accurate [Gerstner] as
will be discussed later.

The algorithm is split into two phases so the result becomes
independent of the order of the neuron calculation and is more
amenable to parallel computation. In the equations, time t+
(calculated in Eq. 3) is the intermediate time between t and t+1. 𝑢𝑢𝑡𝑡+
represents the intermediate value which is calculated for each
neuron. In the second phase (Eqs. 4 & 5), the internal value is
updated for all neurons and if the threshold ϑ has been reached, 𝑢𝑢 is
reset to zero and a spike is transferred to the output.

As an example of the issue that this two-phase calculation

corrects: if a neuron receives two inputs with weights +1 and -1, the
order in which these are processed could change the outcome. In a
multiprocessing implementation, the output would be
indeterminate. With the two-phase approach, all summing is
performed prior to threshold detection so the calculation is
consistent.

176 Brain Simulator II: The Guide for Creating AGI

In the Brain Simulator, the algorithm is “inside-out” in that each
neuron maintains a list of synapses which are its outputs. When the
neuron fires, it adds the synapse weight to the internal charge of
each target neuron. A synchronization lock on each target neuron
charge value allows for multiprocessor operation without potential
race conditions where multiple threads running on different cores
might attempt to modify the internal charge of single a neuron
simultaneously. In practice, such collisions are extremely rare so
these locks are insignificant to performance.

Different from ANNs

It is important to note distinctions between this spiking
algorithm and more typical ANN algorithms. This algorithm’s
neurons output digital spikes as opposed to floating-point numbers.
Accordingly, processing is only required for neurons that are firing.
Thus, processing time goes up with the number of neurons that are
firing and the overall array size contributes only a slight overhead.
Based on the fact that a neuron fires only once every 6 s on average
and using a 5 ms cycle time, an individual neuron would be expected
to fire once every 1,200 cycles. For an array of 100 million neurons,
processing is expected for only 83,000 neurons in each cycle. If a 1
ms cycle time is selected, the expected number of firings drops to
only 16,000. This selection of the cycle time does not impact the
number of neurons firing per second and so the CPU requirement
does not scale directly with the cycle time, but the “overhead”
processing is required for every cycle regardless of the cycle time.

Further, in this algorithm, synapses of a neuron can connect
directly to any other neuron in the network. In the brain, the
synapses connect to other neurons within the radius of the axon
length (10 mm) so there could be 10,000 connections from a
possible 6.5 million target neurons. This still represents such a
sparse array that this algorithm is much less amenable to the GPU
acceleration favored by ANN algorithms which rely on filled arrays.

The focus of most ANN systems relates to backpropagation
learning. For this discussion, learning affects such a tiny portion of
synapses in any cycle that it is not included in this performance
analysis and so the analysis is feedforward only. Although Hebbian
learning has been implemented, it is not included in this analysis.

Performance on Multicore and Multiserver Systems 177

A departure from biological equivalence in this simulation is that
all synapses run direct from one neuron to any other. Because
biological synapses are clustered at the end of the axon, improved
efficiency may be possible, particularly in a multicomputer
implementation.

Performance in a Multicore Environment

In this section, data is presented for processing performance on a
single server which can be used in estimating the number of servers
for the neocortex simulation and some configuration requirements
(RAM, cores, etc.) for each server. All timing measurements are
made using the system high-precision clock which presents time in
100 ns increments. Timings were then calculated with a moving
average of 100 readings to create repeatable results.

Tests were performed on a 64-core AMD Ryzen 3990X CPU
running at 4.0 GHz with 128 GB of quad-channel DDR4 3200 RAM
with Windows 10 Pro. Testing was performed on the Brain
Simulator II version 0.4.

Sensitivity to number of neurons (overhead)

There are two components to the algorithm’s processing time
that predominate with different configurations of network 1)
“overhead” and 2) “neuron processing.” As mentioned before,
neuron processing is only required for neurons that fire but there is
some degree of overhead that scales more-or-less linearly with the
number of neurons. It is necessary to keep track of which neurons
require processing and this is done with a bit-field with each bit
representing a neuron, combined in 64-bit words. This means that
with a single 64-bit memory access, the software can determine
which of the 64 neurons require processing if any. This proved much
faster than maintaining a list of neurons requiring processing.

Overhead was measured by allocating neural arrays with no
synapses and no neurons firing and is shown in Table I. This area of
code has been optimized to minimize RAM access and so is
substantially faster with increasing numbers of threads. At this stage
of development, it appears that overhead processing is intractable
so any real-time simulation requirement is limited by overhead
issues. On the other hand, simulating a 2 ms cycle in 20 ms makes
overhead insignificant.

178 Brain Simulator II: The Guide for Creating AGI

In further tests, overhead processing has not been subtracted out
but explains the mixed-slope processing times. Note also that for
100 million and 1 billion neurons, RAM limits on the test server
precluded allocation of substantive numbers of synapses per
neuron.

TABLE I. OVERHEAD TIMING MEASUREMENTS

Number of
neurons

1M 10M 100M 1G

Time per cycle
(ms)
124 threads

0.70 1.8 3.7 26

Time per cycle
(ms)
32 threads

0.52 1.3 7.6 62

Time per cycle
(ms)
16 threads

0.4 0.96 8.4 82

Sensitivity to number of threads

For these tests, an array of one million neurons was allocated,
each with 100 random synapses. These arbitrary numbers were
chosen to facilitate ease of testing. Random synapse weights were
adjusted so that approximately 33,000 neurons per cycle would be
firing, which is representative of the number of expected neurons
firing in an array of 100 million neurons with a 2 ms cycle time. If
one were to decrease the cycle time, fewer neurons would fire in
each cycle but overhead processing would become more significant.

Performance on Multicore and Multiserver Systems 179

This graph shows the observed processing time per neural cycle to handle a
million neurons firing, each with 100 synapses set to fire 33,000 neurons per
cycle. The total of 3.3 million synapses being handled in 10 ms leads to the raw
figure of 330 million synapses/s.

In any neural network, the number of synapses is large relative
to the number of neurons and overshadows other factors so that
processing time goes up linearly with the number of active synapses.

The 64-core machine is not processor-limited as near-maximum
performance is achieved well short of all cores processing fully.
Examination of the disassembly with a performance profiler showed
that with large numbers of threads, over 90% of the computer time
is spent waiting on the single instruction where the CPU must
retrieve the target neuron from RAM to add to its charge. Since the
target is at a random address relative to the current neuron, nearly
every access to a target neuron will result in a CPU cache miss and
all CPU cores must wait in line to retrieve their target neuron values
from RAM.

A side effect of being RAM-limited on synapse targets is that
neuron processing time is essentially irrelevant as long as it depends
on neuron values that are in the CPU cache. With a more
sophisticated neuron model, such as in [Izhikovich], the CPU will
spend time calculating the neuron value which would otherwise be

180 Brain Simulator II: The Guide for Creating AGI

spent waiting for other threads. As an example, a leakage factor was
added which causes neuron charge to decay exponentially. Not only
did this not increase processing time, but processing time decreased
measurably.

Sensitivity to Synapse distance

It was observed that processing time decreases as “axon” length
decreases (neurons are nearer each other in the array) since nearby
target neurons are more likely to reside in the CPU cache. As the
synapse list approaches a continuous array, a six-fold increase in
performance was obtained. This has not been pursued as it is not
biologically plausible.

Conclusions for Server Configuration

As currently implemented, each neuron requires 144 bytes and each
synapse requires 16 bytes of memory. While the processor
requirement goes up only with the number of neurons and synapses
that fire, the numbers of neurons and synapses allocated dictate the
RAM requirements.

TABLE II. RAM REQUIREMENTS

Synapses/
neuron

1 millino
neurons

10 millino
neurons

100
million

neurons

1 billion
neurons

10 304 MB 3 GB 30 GB 304 GB

100 1.7 GB 17 GB 170 GB 1.7 GB

1,000 16 GB 160 GB 1.6 TB 16 TB

10,000 160 GB 1.6 TB 16 TB 161 TB

As the system performance is RAM-access limited, the shaded

areas of Table II would be useful. Further, the performance
improvement for more than 16 cores (32 threads) is marginal.

As previously estimated, a server with 100 million neurons and
100 synapses per neuron would be expected to process 33,000
active synapses per 2 ms (real-time) cycle and would execute cycles
in about 12 ms (10 ms measured +2 ms estimated additional
overhead). Accordingly, the server would be running at one-sixth
real time. Any number of tradeoffs can be made but in general, the
processing time will decrease with decreasing active synapses.

Performance on Multicore and Multiserver Systems 181

Performance in a Multi-Computer Environment

This section presents results of initial experimentation to establish
the performance characteristics of a multicomputer
implementation, while the following section projects these results to
a complete neocortex emulation. Here, we consider the ability to
handle larger arrays of neurons without a prohibitive loss in
performance.

For multicomputer testing, two additional computers were used:
An Intel i7 4565 CPU running at 2.4 GHz 16GB DDR4 dual-channel
RAM running at 1,198 MHz, and an Intel i7 6700 running at 3.68 GHz
with 16GB of dual-channel DDR4 RAM running at 1,064 MHz. Note
that these computers are substantially slower than the one used in
the previous section. All computers are connected with a 1 Gbps
ethernet LAN.

In a single-computer configuration (left), the user interface communicates with
the server engine directly through RAM. In a multicomputer configuration
(right), the same user interface and engine communicate through a LAN with
thin client and server wrappers. Neuron servers send synapse firing information
directly to each other. Although Neuron Servers can communicate directly with
any other server, in this experiment, all synapse connections are “short” and will
target an adjacent server.

Each server runs the same Neuron Engine .dll as in the previous
tests as shown and the Neuron Server layer handles synapse
references that extend outside the array on the local machine
(“boundary synapses”). When a boundary synapse activates, its
weight and destination are placed in a queue. When the basic

182 Brain Simulator II: The Guide for Creating AGI

Neuron Engine cycle is complete for all local neurons, boundary
synapses are dequeued and sorted so that firings can be clustered
into data packets and sent to the correct server.

On the receiving end, each server listens for incoming packets
and makes the appropriate changes to the target neuron internal
charges. No significant effort has been expended in optimizing this
process as it is assumed that the data transmission time will
overshadow any computation time. For example, the
encoding/decoding process is single-threaded. This “data transfer”
phase was added for ease of development and measurement and
significant possible performance improvements are outlined later.

In this initial implementation, the client directs all servers to
execute a single neuron cycle and then waits for all servers to
complete the neuron cycle and then transfer any boundary synapses
with timing results shown in Table III. Because of the synchronized
nature of this implementation, the system runs at the speed of the
slowest computer in the network. This issue could be avoided by
using a cluster of matched, high-performance servers.

TABLE III. TIMING FOR MULTIPLE SERVERS.

Number of
servers

Total
Neurons

Total Active
Neurons

Overall
cycle time

Timing Total
boundary
synapses

1 1 M 0 10 1.5/0 0
1 1 M 34,000 88 82/0 0
2 2 M 63,000 116 55/53

48/44
99K

3 3 M 93,000 115 51/49
44/50
11/47

146K

Table III shows that after the first server, cycle time is
independent of the number of synapses because the number of
boundary synapses is constant for each added server. The “Timing”
column shows the firing and transfer times for each server. These
can be subtracted from the overall cycle time to estimate the
overhead of running in a client/server configuration.

Performance on Multicore and Multiserver Systems 183

Each Neuron Server reports performance data including the amount of time
spent in the firing algorithm vs. the amount of time in data transfer along with
the number of active boundary synapses.

Each server can transmit approximately 50,000 boundary
synapses in 50 ms or ~1 million synapses/s. Each boundary synapse
requires 9 bytes of information, the target neuron, the weight, and a
flag. These are packed into UDP datagrams with a maximum of 1,500
bytes (the default maximum packet size) so each datagram packet
can send 166 active boundary synapses. UDP is a full-duplex
protocol so servers can transmit and receive simultaneously. UDP
includes no reliability checking but in the controlled environment of
these tests, it is error-free as the ~50,000 synapses/s represent less
than 1% of the network capacity.

Discussion

The result of this test indicates that any number of servers can be
added to simulate any desired size of neuron array. In practice, other
factors will likely emerge with larger numbers of servers and further
experimentation will be needed to identify these. Overall,
performance remains constant for two or more servers because
each server adds the computational and transmission capacity
needed to process its neurons and the amount of server-to-server
network traffic is constant between any pair of adjacent servers.
This also ignores the concept of long connections which will be
discussed in the next section.

As it stands, the network transfer implementation is far from
optimal even in terms of today’s hardware. Here are some additions
which could make it significantly faster:
• Use a 10 Gbps network. Estimated performance improvement:

10x.
• Create “virtual axons”. Rather than sending individual active

synapse weights, the output of a neuron can be transferred to

184 Brain Simulator II: The Guide for Creating AGI

the receiving server where it is distributed to multiple target
neurons. Only a single number (5 bytes) representing the axon
must be transferred as all the weight information will reside on
the target server. The estimated performance improvement is
equal to the simulated number of synapses per neuron. (A side-
effect of this change is that learning can be implemented with
the synapse data needed residing on individual servers rather
than ever crossing server boundaries.)

• Overlap the transmission phase in parallel with neuron
processing. This introduces a one-cycle delay in signals crossing
machine boundaries which could be an issue. Estimated
performance improvement: can reduce the network delay to
near zero as neural processing will be slower than network
transfer.

Simulating the Entire Neocortex

Based on the performance testing above, we can create an improved
estimate of the amount of computer power needed to emulate the
neocortex’s 16 billion neurons, assuming the improvements above
are implemented. Conceptually, each hemisphere could be
subdivided radially across N.

Short Connections: The number of axons crossing each radial
boundary is independent of N and is estimated at 50 million. (250
mm * 250 neurons/mm * 800 boundary synapses/neuron). With an
expected activity rate of once every 6 s, the expected data load would
be 42 MB/s (5 bytes/axon * 50 million axons / 6 s) which is well
within the expected performance of a 10 Gbps network.

Long connections: Axons that connect one hemisphere to the
other or elsewhere and represent as many as 300 million fibers. We
assume that these connections will always cross a machine
boundary and must be added to any short-connection calculations.
We further assume that they will be distributed evenly among the
various machines, meaning that each machine would be burdened
with an additional 300M/N connections. Regardless of the activity
rate, these turn out to be inconsequential relative to the boundary
axons.

Using the experimental data, a server simulating 100 million
neurons with 100 synapses each can run in one-sixth real time. You

Performance on Multicore and Multiserver Systems 185

would require 160 such servers to simulate 16 billion neurons, 80
for each hemisphere. Each server would be responsible for
transferring 50 million short connections and 2 million long
connections. Continuing to use a firing rate of every 6 s and an axon
number of 8 bytes yields a data transmission requirement of ~80
MB/s.

Using a different number of synapses per neuron or average
firing frequency scales the problem linearly. That is, using 10x as
many synapses will make the simulation run 10x slower so one
second of “thinking” would require one minute of simulation.
Increasing the number of servers will only compensate up to the
point where sectors become so small that a short connection will
span more than the adjacent sector, dramatically increasing the
number of boundary connections.

These performance experiments indicate that creating a full-
neocortex simulation is feasible on today’s hardware with the scale
of the implementation based on various assumptions and the
outcome of future neuroscience discoveries. Chief among these is an
improved understanding of the actual synaptic interconnection
patterns and processes among neurons.

References
[1] L. Abbott, “Lalique’s introduction of the integrate-and-fire model neuron (1907),”

Brain Research Bulletin, Vol. 50, Nos. 5-6, pp. 303–304, 1999
[2] L. Camuñas-Mesa, B. Linares-Barranco, T. Serrano-Gotarredona, “Neuromorphic

spiking neural networks and their memristor-CMOS hardware implementations,”
MDPB Materials, August 2019. DOI: 10.3390/ma12172745

[3] S. Dutta, V. Kumar, A. Shukla, N. Mohapatra, U. Ganguly, “Leaky integrate and fire
neuron by charge-discharge dynamics in floating-body MOSFET,” Scientific Reports,
2017.DOI: 10.1038/s41598-017-07418-y

[4] A. Faisal, L. Selen, D. Wolpert, “Noise in the nervous system,” National Review of
Neuroscience. 2008 Apr; 9(4): 292–303. DOI: 10.1038/nrn2258

[5] K. Grace, ed, “Neuron firing rates in humans,” [Survey of related research], AI
Impacts, https://aiimpacts.org/rate-of-neuron-firing/

[6] E. Kandel, J. Schwartz, T.M Jessel, Principles of Neural Science (3rd ed.).
Elsevier. ISBN 978-0444015624.

[7] P. Lennie, “The cost of cortical computing,” Current Biology, March 2003
DOI: 10.1016/s0960-9822(03)00135-0

[8] M. D. McDonnell, K. Boahen, A. Ijspeert and T. J. Sejnowski, "Engineering intelligent
electronic systems based on computational neuroscience," in Proceedings of the
IEEE, vol. 102, no. 5, pp. 646-651, May 2014, DOI: 10.1109/JPROC.2014.2314776.

[9] J.M.. Montgomery, D.V. Madison. “Discrete synaptic states define a major
mechanism of synapse plasticity.” Trends in Neuroscience, Dec. 2004, 27(12):744-
750. DOI:10.1016/j.tins.2004.10.006

[10] C. Simon, “New Brain Simulator II Open-Source Software” Proceedings, AGI20, in
press.

186 Brain Simulator II: The Guide for Creating AGI

[11] Z. Zeldenrust, W. Wadman, B. Englitz1, “Neural coding with bursts—current state

and future perspectives,” Frontiers in Computational Neuroscience, 2018, DOI:
10.3389/fncom.2018.00048

[12] Braitenberg, V, Schüz, A., Cortex: Statistics and Geometry of Neuronal Connectiviey,
Springer, 1998.

[13] Gerstner W.,Naud, R., Kistler W., Paninski L., Neuronal Dynamics, Cambidge
University Press., 2014.

[14] Izhikovich, E., “Simple Model of Spiking Neurons”, IEEE Transactions on Neural
Networks, Nov, 2003.

Video Links

“Brain Simulator II Tops 2.5 Billion synapses per second”
http://futureai.guru/videos?id=129

“Multiserver Functions with Brain Simulator II”
http://futureai.guru/videos?id=131

“How Your Brain Works Part3: Computational Capacity”
https://futureai.guru/videos?ID=106

http://futureai.guru/videos?id=129
http://futureai.guru/videos?id=131
https://futureai.guru/videos?ID=106

187

Chapter 14:
Future Development

The Brain Simulator is an ongoing project with the target of creating
an Artificial General Intelligence. The prototype AGI, “Sallie”, can do
lots of things but, in general, cannot do many of them at once or do
them on complex data.

Here are some of the things which Sallie can do right now:
• Move around within a simulator and build up a mental model

of surroundings from vision.
• Update the mental model by touch.
• Avoid obstacles while moving in the environment.
• Move objects in the environment to achieve a goal.
• Learn words associated with object features.
• Respond to voice commands and produce spoken responses.
• Imagine the environment from a different point of view.
• Plan a series of actions to achieve a goal.

Development has been on a small scale, limiting Sallie to
encountering just a few object types and a few attributes and
learning just a few words. The reason for the small-scale approach
is the presumption that if we can’t solve a problem with just a few
parameters, solving it with thousands is beyond impossible. The
development intent is to build a system that can truly understand
just a few object types before moving on. For understanding, think
of how a three-year-old knows about things in her environment.
What is there to understand about simple blocks…shape, stacking,
falling, inertia, color, planning, goals, following verbal directions,
giving verbal descriptions…all things we might associate with a true
AGI but on a tiny scale.

With just a few parameters, we can take software shortcuts and
learn which processes work and which don’t. Once small-scale
issues are overcome, the structure of the Brain Simulator can be
scaled up to huge arrays of neurons or a limitless UKS.

188 Brain Simulator II: The Guide for Creating AGI

Current development provides for pre-defined object and
parameter types. In the UKS chapter, I described how Blue and
Brown are both Colors. But how can we make this generalization?
We can imagine that somewhere in the brain, every input is just a
neuron firing. Now, the difficulty is to determine that some firings
represent a shape and others, a color, or a size (or a sound or touch).
The key is to know that certain groups of neurons represent a
category (such as shape or color). Armed with the ability to infer
categories from what would otherwise be seemingly random
incoming neural spikes, it is likely that greater intelligence will
emerge. Other components such as internal modeling and the ability
to learn from mistakes are already in place. The ability to relate
words to other inputs is also already in place.

In coming development iterations, Sallie should be able to
explore her simulated environment and “understand” what there is
to be learned. I put the word understand in quotes because: How
much can you learn about a few two-dimensional objects in a two-
dimensional world? She should be able to learn that some objects
are moveable and that she can move objects to accomplish her goals.

Once the current simulated environment is mastered, Sallie can
be upgraded to a three-dimensional simulator. Again, with just a few
possible objects and actions, Sallie should be able to learn
everything possible about that environment as well. She should be
able to learn about object persistence and the passage of time, and
planning for the future, and the simple physics of gravity. With these
abilities common to any three-year-old, she should be able to expand
her horizons to real-world interactions.

Advances will be gradual and, at each step along the way, we’ll be
able to ascertain that Sallie is safe and progressing toward becoming
a useful asset to humanity.

189

Glossary
This glossary is intended to clarify how terms are used within this
book. Also, note that terms (like “Network”) are capitalized within
the text when they refer to specific Brain Simulator features.

AGI (Artificial General Intelligence): Possible future extension of

AI to enable it to perform virtually any mental task a human
can.

AI (Artificial Intelligence): Branch of computer science involved in
developing systems to perform tasks normally requiring
human intelligence.

Algorithm: A procedure or set of instructions that can be followed
explicitly to solve a problem. A computer program that can
be executed by a CPU is an implementation of an algorithm.

ANN (Artificial Neural Network): A computer system, usually
software, designed to loosely follow the computational
processes of the human brain involving a large number of
identical computing cells.

Axon: The part of a biological neuron that carries the signal from the
cell body to the synapses.

Backpropagation: An ANN algorithm for adjusting synapse weights
in a neural network that creates learning using the
difference between a network’s output and a known desired
output.

Cache memory: Portion of a CPU that maintains a copy of a portion
of RAM content so the CPU can access it more quickly than
via a full RAM access.

CPU (Central Processing Unit): Part of a computer that retrieves
program instructions from RAM and follows the program to
manipulate data.

Deep learning: A neural network with many internal, “hidden”,
layers.

190 Brain Simulator II: The Guide for Creating AGI

Dendrite: The part of a biological neuron that receives neural pulses

from other neurons via synapses.
Dialog: A custom display window for a Module.
DNA (Deoxyribonucleic acid): The long-chain molecule consisting

of a “ladder” of different base pairs which code for the
creation of proteins in living cells. DNA can be thought of as
a data storage device.

DRAM (Dynamic Random Access Memory): Type of RAM
common in computers characterized by the requirement
that it must be periodically refreshed or its memory content
will be lost.

Graph: An abstract construct of “nodes” connected by “edges” used
for knowledge representation.

Knowledge Graph: See “Graph”.
LAN (Local Area Network): High-speed connection between

computers which is differentiated from Network which is a
collection of Neurons connected by Synapses.

Learning: Adjusting synapse weights to allow a network to adapt to
perform a specific action, such as learning to recognize
phonemes.

Link: Within the UKS, the connection between two Things. It may
optionally be weighted or tagged to be processed
sequentially.

Module: The software that can be applied to a cluster of neurons to
create some unique functionality.

ms (millisecond): A thousandth of a second.
µs (microsecond): A millionth of a second.
Network: Collection of Neurons connected by Synapses (along with

Modules and other information). This is differentiated from
LAN (a computer network) and neural network (which is a
specific kind of AI).

ns (nanosecond): A billionth of a second. Light can travel a distance
of about 30 cm in this time.

Neural network: See ANN.
Neural Spike: In biology, the measured voltage spike that travels

down a neuron’s axon to target synapses. In the Brain

Glossary 191

Simulator, a spike is the execution of the algorithm which
processes a Neuron’s Synapses and adds their weights to
target Neurons.

Neuron: A biological cell that is a component of the brain and
nervous system. Neurons process pulses received from
other neurons and transmits pulses to other neurons. Within
the Brain Simulator, Neuron refers to a specific simulated
entity.

Neuron Engine The portion of the Brain Simulator that actually
handles the simulation algorithms. This is a separate DLL file
from the user interface.

Neuron Server: A stand-alone configuration of the Neuron Engine
which receives and transmits all its data via a LAN.

Neurotransmitter: A biological molecule that carries a neural
signal across a synaptic gap from one neuron to another.

Phoneme: Any audible unit of speech. A single syllable is usually
made up of multiple phonemes. “Ball” is made up of three
phonemes consisting of the sounds of the “b”, “ah”, and “l”.

Spike: See “Neural Spike”.
Synapse: The part of a biological neuron that transfers a neural

signal from one neuron to another using neurotransmitters.
Within the Brain Simulator, a Synapse is a weighted
connection between a pair of Neurons: a source Neuron and
a target Neuron.

Thing: Within the UKS, a Thing is a node connected to other Things
by Links.

UKS (Universal Knowledge Store): A software implementation of
a knowledge graph in a Module

Transistor: An electronic switch with three connections where
electricity applied to one of the connections controls the
flow of electricity between the other two.

XML: A standard file format that can be used to represent virtually
any data. The content of the file more-or-less defines the
structure of the data.

193

Index………..

A

AGI
Defined · 169
Strategy · 9

AGILE software development · 10
AI

Defined · 169
divergence from biology · 37

axon · 17
defined · 169
delay · 29

B

Brain Simulator
Download · 6
Requirements · 6
Source code · 6
Strategy · 10

C

clipboard · 64, 91
copy · 92
delete · 92

copy · 92
cut · 92

D

digital logic
always spiking model · 47
single spike model · 49

download
executable · 6
source code · 6

E

Eight Elements of intelligence · 11

F

firing history
recording · 88

firing history window · 94

I

imagination · 140
Integrate and Fire model · 19

diagram · 20
Intelligence Model · 11

K

Knowledge · 111

L

Leaky Integrate and Fire (LIF) Model ·
21
as high-pass filter · 22
diagrem · 21

Link · 123

M

mental model · 137
Module

add to network · 93
context menu · 93
creating new · 101
defined · 67
list of current · 72

194 Brain Simulator II: The Guide for Creating AGI

mouse cursor · 83
move · 92

N

Network
defined · 60
file content · 61
list of current · 64

network file
new · 79
open · 78
properties · 81

neuron
always-firing model · 25
array · 13
as a logic device · 47
as frequency detector · 53
biological · 16
burst model · 24
color · 82
color psuedo-model · 30
context menu · 87
display · 81
firing history window · 94
FloatValue psuedomodel · 30
IF model equations · 155
integrate and fire model · 19
labels · 31
leaky integrate and fire model · 21
random model · 24
spike timing · 18

Neuron Engine · 99
c# interface · 99
c++ interface · 99
defined · 171
speed, controlling · 86
threads · 86

Neuron Server · 96, 161
defined · 171
setting up · 96

noise · 23

P

pan · 83, 84
paste · 92

planning · 141
PointPlus · 139
propagation delay · 28, 29

R

refractory period · 28
defined · 18
setting · 86

S

Sallie · 11
learning by correlation · 142
navigating maze · 144
Network · 64

selection · 84
context menu · 93

shortcut key · 96
simulator

world · 133
source code

modifying Neuron Engine · 100
Module Creation · 101

spiking model · 18
synapse

"boundary" · 161
add multiple · 88
biological · 17
context menu · 89
defined · 171
display · 83
Hebbian · 25
model · 26
plasticity · 26

T

Thing · 123

U

UKS (Universal Knowledge Store) ·
111

Index 195

W

world simulator · 133

Z

zoom · 84

196 Brain Simulator II: The Guide for Creating AGI

About the Author

Charles J. Simon, BSEE, MSCS, a

uniquely qualified, nationally recognized
computer software/hardware expert
and neural network pioneer, is also a
successful author and speaker.

His combined development
experience in CPUs, neurological test
equipment, and artificial intelligence
software enabled him to write this book.

Previous publications include the
book Will Computers Revolt? Preparing for the Future of Artificial
Intelligence, a book on Computer Aided Design, and numerous
technical articles and book contributions, with write-ups in
Newsweek and other media.

Personal interests include sailing, being one of the few to captain
a North American Continent Circumnavigation via the Arctic
Northwest Passage and a World Circumnavigation. His
philanthropic interests include science centers, art museums, and
sailing education programs. Charles and his wife Cathy now split
their time between the US East and West Coasts.

Charles is a member of: IEEE, Triple Nine Society, Intertel, Mensa,
Ocean Cruising Club, and Annapolis Yacht Club. Charles was
nominated for a Microsoft Fellow award.

	Blank Page
	Blank Page

